Roles of Nitrogen- and Sulphur-Containing Groups in Copper Ion Adsorption by a Modified Chitosan Carboxymethyl Starch Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MCTS-CMS Polymer Preparation
2.3. Characterisation of the MCTS-CMS Polymer
2.4. Adsorption Experiments
2.5. XRD and XPS Measurements
3. Results
3.1. Characteristics of the MCTS-CMS Polymer
3.1.1. FTIR Analysis
3.1.2. SEM-EDS Analysis
3.2. Adsorption Experiments
3.2.1. Effect of the pH on Cu(II) Adsorption
3.2.2. Effect of the Adsorption Time
3.2.3. Effect of the Reaction Temperature
3.2.4. Effect of the Initial Concentration
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
3.5. Adsorption Thermodynamics
3.6. Adsorption Mechanism of Cu(II)
3.6.1. XRD Analysis
3.6.2. XPS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fulke, A.B.; Ratanpal, S.; Sonker, S. Understanding Heavy Metal Toxicity: Implications on Human Health, Marine Ecosystems and Bioremediation Strategies. Mar. Pollut. Bull. 2024, 206, 116707. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wu, L.; Su, Q.; Ji, X.; Zhou, J.; Wu, S.; Tang, Y.; Li, H. Neurotoxic Effects of Heavy Metal Pollutants in the Environment: Focusing on Epigenetic Mechanisms. Environ. Pollut. 2024, 345, 123563. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, P.; Saravanan, V.; Rajeshkannan, R.; Arnica, G.; Rajasimman, M.; Baskar, G.; Pugazhendhi, A. Comprehensive Review on Toxic Heavy Metals in the Aquatic System: Sources, Identification, Treatment Strategies, and Health Risk Assessment. Environ. Res. 2024, 258, 119440. [Google Scholar] [CrossRef] [PubMed]
- Utilization of Organic-Rich Materials for the Adsorption of Copper Ions from Aqueous Environments. Results Eng. 2024, 22, 102216. [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Barceloux, D.G.; Barceloux, D. Copper. J. Toxicol. Clin. Toxicol. 1999, 37, 217–230. [Google Scholar] [CrossRef]
- Kahlson, M.A.; Dixon, S.J. Copper-Induced Cell Death. Science 2022, 375, 1231–1232. [Google Scholar] [CrossRef]
- Scheiber, I.; Dringen, R.; Mercer, J.F.B. Copper: Effects of Deficiency and Overload. In Interrelations between Essential Metal Ions and Human Diseases; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Metal Ions in Life Sciences; Springer: Dordrecht, The Netherlands, 2013; pp. 359–387. ISBN 978-94-007-7500-8. [Google Scholar]
- Thorgersen, M.P.; Lancaster, W.A.; Ge, X.; Zane, G.M.; Wetmore, K.M.; Vaccaro, B.J.; Poole, F.L.; Younkin, A.D.; Deutschbauer, A.M.; Arkin, A.P.; et al. Mechanisms of Chromium and Uranium Toxicity in Pseudomonas Stutzeri RCH2 Grown under Anaerobic Nitrate-Reducing Conditions. Front. Microbiol. 2017, 8, 1529. [Google Scholar] [CrossRef]
- Incorporation of Copper Ion Promoted Adsorption of Anionic Dye (Acid Yellow 36) by Acrolein-Crosslinked Polyethyleneimine/Chitosan Hydrogel: Adsorption, Dynamics, and Mechanisms. Int. J. Biol. Macromol. 2024, 274, 133281. [CrossRef]
- Kim, J.; Yoon, S.; Choi, M.; Min, K.J.; Park, K.Y.; Chon, K.; Bae, S. Metal Ion Recovery from Electrodialysis-Concentrated Plating Wastewater via Pilot-Scale Sequential Electrowinning/Chemical Precipitation. J. Clean. Prod. 2022, 330, 129879. [Google Scholar] [CrossRef]
- Chauhan, M.S.; Rahul, A.K.; Shekhar, S.; Kumar, S. Removal of Heavy Metal from Wastewater Using Ion Exchange with Membrane Filtration from Swarnamukhi River in Tirupati. Mater. Today Proc. 2023, 78, 1–6. [Google Scholar] [CrossRef]
- Kampalanonwat, P.; Supaphol, P. Preparation and Adsorption Behavior of Aminated Electrospun Polyacrylonitrile Nanofiber Mats for Heavy Metal Ion Removal. ACS Appl. Mater. Interfaces 2010, 2, 3619–3627. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Thakur, B.; Naushad, M.; Al-Muhtaseb, A.H.; Kumar, A.; Sillanpaa, M.; Mola, G.T. Fabrication and Characterization of Sodium Dodecyl Sulphate@ironsilicophosphate Nanocomposite: Ion Exchange Properties and Selectivity for Binary Metal Ions. Mater. Chem. Phys. 2017, 193, 129–139. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Liu, S.; Zhang, J.; Yang, X. Molecular Simulation of Reverse Osmosis for Heavy Metal Ions Using Functionalized Nanoporous Graphenes. Comput. Mater. Sci. 2017, 139, 65–74. [Google Scholar] [CrossRef]
- Shuya, L.; Yang, C.; Xuefeng, C.; Wei, S.; Yaqing, W.; Yue, Y. Separation of Lithium and Transition Metals from Leachate of Spent Lithium-Ion Batteries by Solvent Extraction Method with Versatic 10. Sep. Purif. Technol. 2020, 250, 117258. [Google Scholar] [CrossRef]
- Allioux, F.-M.; Kapruwan, P.; Milne, N.; Kong, L.; Fattaccioli, J.; Chen, Y.; Dumée, L.F. Electro-Capture of Heavy Metal Ions with Carbon Cloth Integrated Microfluidic Devices. Sep. Purif. Technol. 2018, 194, 26–32. [Google Scholar] [CrossRef]
- Mondal, S.; Chatterjee, S.; Mondal, S.; Bhaumik, A. Thioether-Functionalized Covalent Triazine Nanospheres: A Robust Adsorbent for Mercury Removal. ACS Sustain. Chem. Eng. 2019, 7, 7353–7361. [Google Scholar] [CrossRef]
- Pei, Y.; Zhang, Y.; Ma, J.; Zhao, Y.; Li, Z.; Wang, H.; Wang, J.; Du, R. Carboxyl Functional Poly(Ionic Liquid)s Confined in Metal–Organic Frameworks with Enhanced Adsorption of Metal Ions from Water. Sep. Purif. Technol. 2022, 299, 121790. [Google Scholar] [CrossRef]
- Li, X.-J.; Cui, W.-R.; Jiang, W.; Yan, R.-H.; Liang, R.-P.; Qiu, J.-D. Bi-Functional Natural Polymers for Highly Efficient Adsorption and Reduction of Gold. Chem. Eng. J. 2021, 422, 130577. [Google Scholar] [CrossRef]
- Schmidt, B.; Rokicka, J.; Janik, J.; Wilpiszewska, K. Preparation and Characterization of Potato Starch Copolymers with a High Natural Polymer Content for the Removal of Cu(II) and Fe(III) from Solutions. Polymers 2020, 12, 2562. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an Environment Friendly Biomaterial—A Review on Recent Modifications and Applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Croisier, F.; Jérôme, C. Chitosan-Based Biomaterials for Tissue Engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef]
- Mallik, A.K.; Kabir, S.F.; Bin Abdur Rahman, F.; Sakib, M.N.; Efty, S.S.; Rahman, M.M. Cu(II) Removal from Wastewater Using Chitosan-Based Adsorbents: A Review. J. Environ. Chem. Eng. 2022, 10, 108048. [Google Scholar] [CrossRef]
- Popuri, S.R.; Frederick, R.; Chang, C.-Y.; Fang, S.-S.; Wang, C.-C.; Lee, L.-C. Removal of Copper (II) Ions from Aqueous Solutions onto Chitosan/Carbon Nanotubes Composite Sorbent. Desalination Water Treat. 2014, 52, 691–701. [Google Scholar] [CrossRef]
- Fan, X.; Wang, X.; Cai, Y.; Xie, H.; Han, S.; Hao, C. Functionalized Cotton Charcoal/Chitosan Biomass-Based Hydrogel for Capturing Pb2+, Cu2+ and MB. J. Hazard. Mater. 2022, 423, 127191. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Gou, S.; Zhou, L.; Tang, L.; Liu, T.; Liu, L.; Duan, M. Amidoxime-Functionalized Polyacrylamide-Modified Chitosan Containing Imidazoline Groups for Effective Removal of Cu2+ and Ni2+. Carbohydr. Polym. 2021, 252, 117160. [Google Scholar] [CrossRef]
- Pires, A.B.; Vitali, L.; Tavares, A.; Germano, C.A.; Amorim, S.M.; Moreira, R.F.P.M.; Peralta, R.A.; Neves, A. Chitosan Functionalized with Heptadentate Dinucleating Ligand Applied to Removal of Nickel, Copper and Zinc. Carbohydr. Polym. 2021, 256, 117589. [Google Scholar] [CrossRef]
- Zia, Q.; Tabassum, M.; Lu, Z.; Khawar, M.T.; Song, J.; Gong, H.; Meng, J.; Li, Z.; Li, J. Porous Poly(L–Lactic Acid)/Chitosan Nanofibres for Copper Ion Adsorption. Carbohydr. Polym. 2020, 227, 115343. [Google Scholar] [CrossRef]
- Sun, Y.; Li, D.; Lu, X.; Sheng, J.; Zheng, X.; Xiao, X. Flocculation of Combined Contaminants of Dye and Heavy Metal by Nano-Chitosan Flocculants. J. Environ. Manag. 2021, 299, 113589. [Google Scholar] [CrossRef]
- Humelnicu, D.; Dragan, E.S.; Ignat, M.; Dinu, M.V. A Comparative Study on Cu2+, Zn2+, Ni2+, Fe3+, and Cr3+ Metal Ions Removal from Industrial Wastewaters by Chitosan-Based Composite Cryogels. Molecules 2020, 25, 2664. [Google Scholar] [CrossRef]
- Pereira, F.A.R.; Sousa, K.S.; Cavalcanti, G.R.S.; Fonseca, M.G.; de Souza, A.G.; Alves, A.P.M. Chitosan-Montmorillonite Biocomposite as an Adsorbent for Copper (II) Cations from Aqueous Solutions. Int. J. Biol. Macromol. 2013, 61, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wang, C.; He, J.; Hua, Z.; Cheng, K.; Wu, X.; Sun, W.; Wang, L.; Hu, J.; Tang, H. Selective Depressing Mechanism of H-Acid Monosodium Salt on Flotation Separation of Graphite and Sphalerite. Trans. Nonferr. Met. Soc. China 2023, 33, 3812–3824. [Google Scholar] [CrossRef]
- Chen, L.; Hao, H.; Zhang, W.; Shao, Z. Adsorption Mechanism of Copper Ions in Aqueous Solution by Chitosan–Carboxymethyl Starch Composites. J. Appl. Polym. Sci. 2020, 137, 48636. [Google Scholar] [CrossRef]
- Verma, M.; Lee, I.; Sharma, S.; Kumar, R.; Kumar, V.; Kim, H. Simultaneous Removal of Heavy Metals and Ciprofloxacin Micropollutants from Wastewater Using Ethylenediaminetetraacetic Acid-Functionalized β-Cyclodextrin-Chitosan Adsorbent. ACS Omega 2021, 6, 34624–34634. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Khan, M.N.; Mallik, A.K.; Rahman, M.M. Preparation of Bio-Inspired Trimethoxysilyl Group Terminated Poly(1-Vinylimidazole)-Modified-Chitosan Composite for Adsorption of Chromium (VI) Ions. J. Hazard. Mater. 2019, 379, 120792. [Google Scholar] [CrossRef]
- Radosavljević, S.A.; Stojanović, J.N.; Radosavljević-Mihajlović, A.S.; Vuković, N.S. (Pb–Sb)-Bearing Sphalerite from the Čumavići Polymetallic Ore Deposit, Podrinje Metallogenic District, East Bosnia and Herzegovina. Ore Geol. Rev. 2016, 72, 253–268. [Google Scholar] [CrossRef]
- Guo, L.-J.; Niu, C.-G.; Wang, X.-Y.; Wen, X.-J.; Zeng, G.-M. DTC-GO as Effective Adsorbent for the Removal of Cu2+ and Cd2+ from Aqueous Solution. Water Air Soil Pollut. 2016, 227, 169. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Yang, A.; Zhu, Q.; Sun, H.; Sun, P.; Yao, B.; Zang, Y.; Du, X.; Dong, L. Xanthate-Modified Magnetic Fe3O4@SiO2-Based Polyvinyl Alcohol/Chitosan Composite Material for Efficient Removal of Heavy Metal Ions from Water. Polymers 2022, 14, 1107. [Google Scholar] [CrossRef] [PubMed]
- Krebs, E.; Silvi, B.; Raybaud, P. Mixed Sites and Promoter Segregation: A DFT Study of the Manifestation of Le Chatelier’s Principle for the Co(Ni)MoS Active Phase in Reaction Conditions. Catal. Today 2008, 130, 160–169. [Google Scholar] [CrossRef]
- Debnath, S.; Das, R. Strong Adsorption of CV Dye by Ni Ferrite Nanoparticles for Waste Water Purification: Fits Well the Pseudo Second Order Kinetic and Freundlich Isotherm Model. Ceram. Int. 2023, 49, 16199–16215. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. J. Frankl. Inst. 1917, 183, 102–105. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Temkin, M.; Pyzhev, V. Recent Modifications to Langmuir Isotherms. Acta Phys.-Chim. Sin. 1940, 12, 217–222. [Google Scholar]
- Graf, N.; Yegen, E.; Gross, T.; Lippitz, A.; Weigel, W.; Krakert, S.; Terfort, A.; Unger, W.E.S. XPS and NEXAFS Studies of Aliphatic and Aromatic Amine Species on Functionalized Surfaces. Surf. Sci. 2009, 603, 2849–2860. [Google Scholar] [CrossRef]
- Min, H.; Girard-Lauriault, P.-L.; Gross, T.; Lippitz, A.; Dietrich, P.; Unger, W.E.S. Ambient-Ageing Processes in Amine Self-Assembled Monolayers on Microarray Slides as Studied by ToF-SIMS with Principal Component Analysis, XPS, and NEXAFS Spectroscopy. Anal. Bioanal. Chem. 2012, 403, 613–623. [Google Scholar] [CrossRef]
- Gardner, S.D.; Singamsetty, C.S.K.; Booth, G.L.; He, G.-R.; Pittman, C.U. Surface Characterization of Carbon Fibers Using Angle-Resolved XPS and ISS. Carbon 1995, 33, 587–595. [Google Scholar] [CrossRef]
- Luo, S.; Wei, Z.; Dionysiou, D.D.; Spinney, R.; Hu, W.-P.; Chai, L.; Yang, Z.; Ye, T.; Xiao, R. Mechanistic Insight into Reactivity of Sulfate Radical with Aromatic Contaminants through Single-Electron Transfer Pathway. Chem. Eng. J. 2017, 327, 1056–1065. [Google Scholar] [CrossRef]
- Ghodselahi, T.; Vesaghi, M.A.; Shafiekhani, A.; Baghizadeh, A.; Lameii, M. XPS Study of the Cu@Cu2O Core-Shell Nanoparticles. Appl. Surf. Sci. 2008, 255, 2730–2734. [Google Scholar] [CrossRef]
Kinetic Model | Parameter | |||
---|---|---|---|---|
k | Qe | C | Correlation Coefficient (R2) | |
Pseudo first order | 0.423 | 280.183 | - | 0.99744 |
Pseudo second order | 0.005 | 287.671 | - | 0.99989 |
Intraparticle diffusion | 25.580 | - | 126.994 | 0.51400 |
T (K) | Langmuir Parameter | Freundlich Parameter | Temkin Parameter | ||||||
---|---|---|---|---|---|---|---|---|---|
Qmax | b | R2 | Kf | n | R2 | A | B | R2 | |
293.15 | 321.16 | 1.71 | 0.996 | 276.56 | 0.03 | 0.820 | 3.20×1011 | 10.37 | 0.831 |
303.15 | 312.24 | 2.06 | 0.999 | 274.74 | 0.03 | 0.866 | 4.16×1013 | 8.72 | 0.874 |
313.15 | 296.89 | 3.45 | 0.993 | 274.05 | 0.02 | 0.897 | 3.20×1022 | 5.28 | 0.902 |
323.15 | 287.50 | 5.66 | 0.990 | 274.19 | 0.01 | 0.796 | 2.38×1039 | 3.02 | 0.800 |
T (K) | KC | ΔG0 (kJ·mol−1) | ΔH0 (kJ·mol−1) | ΔS0 (J·mol−1·K−1) |
---|---|---|---|---|
293.15 | 17.91 | −7.03 | −15.208 | 27.73 |
303.15 | 15.04 | −6.833 | ||
313.15 | 12.66 | −6.610 | ||
323.15 | 9.98 | −6.180 |
Angle | Full Width at Half Maximum | Average Interplanar Spacing (nm) | Average Crystal Size (nm) |
---|---|---|---|
12.743 | 0.211 | 73.76 | 0.27 |
25.662 | 0.364 | ||
33.172 | 0.156 | ||
37.101 | 0.202 | ||
44.823 | 0.281 | ||
59.771 | 0.216 | ||
59.975 | 0.538 |
Species | Before Adsorption | After Adsorption | ||
---|---|---|---|---|
B.E. | At.% | B.E. | At.% | |
C 1s | 284.8 | 60.71 | 284.8 | 64.26 |
N 1s | 398.8 | 1.87 | 399.8 | 2.27 |
O 1s | 530.8 | 35.01 | 530.8 | 26.32 |
S 2p | 166.8 | 2.41 | 162.8 | 5.65 |
Cu 2p | - | - | 930.8 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, Z.; Dong, Y.; Chen, L.; Jiang, F.; Tang, H.; Feng, D. Roles of Nitrogen- and Sulphur-Containing Groups in Copper Ion Adsorption by a Modified Chitosan Carboxymethyl Starch Polymer. Separations 2024, 11, 283. https://doi.org/10.3390/separations11100283
Hua Z, Dong Y, Chen L, Jiang F, Tang H, Feng D. Roles of Nitrogen- and Sulphur-Containing Groups in Copper Ion Adsorption by a Modified Chitosan Carboxymethyl Starch Polymer. Separations. 2024; 11(10):283. https://doi.org/10.3390/separations11100283
Chicago/Turabian StyleHua, Zhongbao, Yujie Dong, Liang Chen, Feng Jiang, Honghu Tang, and Dongxia Feng. 2024. "Roles of Nitrogen- and Sulphur-Containing Groups in Copper Ion Adsorption by a Modified Chitosan Carboxymethyl Starch Polymer" Separations 11, no. 10: 283. https://doi.org/10.3390/separations11100283
APA StyleHua, Z., Dong, Y., Chen, L., Jiang, F., Tang, H., & Feng, D. (2024). Roles of Nitrogen- and Sulphur-Containing Groups in Copper Ion Adsorption by a Modified Chitosan Carboxymethyl Starch Polymer. Separations, 11(10), 283. https://doi.org/10.3390/separations11100283