Study on Phosphorus Variability Characteristics and Response Mechanism of Microbial Community during Sediment Resuspension Process
Abstract
:1. Introduction
2. Material and Methods
2.1. Experiment Design and Sample Collection
2.2. Experimental Methods
2.3. Data and Statistical Analysis
3. Results and Discussion
3.1. Changes in P Characterization during Sediment Resuspension Process
3.2. Diversity Analysis of Microbial Community in the Sediment Resuspension System
3.3. Distribution of the Microbial Community in Sediments and Suspended Solids at Phylum and Genus Levels
3.4. Distribution of Microbial Community of the Plants at Phylum and Genus Levels
3.5. Response Mechanism of Microbial Community during Sediment Resuspension Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sondergaard, M.; Jensen, J.P.; Jeppesen, E. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 1999, 408, 145–152. [Google Scholar] [CrossRef]
- Xia, F.; Yao, Q.; Zhang, J.; Wang, D. Effects of seasonal variation and resuspension on microplastics in river sediments. Environ. Pollut. 2021, 286, 117403. [Google Scholar] [CrossRef]
- Dabholkar, N.; Gorantla, S.; Waghule, T.; Rapalli, V.K.; Kothuru, A.; Goel, S.; Singhvi, G. Biodegradable microneedles fabricated with carbohydrates and proteins: Revolutionary approach for transdermal drug delivery. Int. J. Biol. Macromol. 2021, 170, 602–621. [Google Scholar] [CrossRef]
- Huang, L.; Fang, H.; Fazeli, M.; Chen, Y.; He, G.; Chen, D. Mobility of phosphorus induced by sediment resuspension in the Three Gorges Reservoir by flume experiment. Chemosphere 2015, 134, 374–379. [Google Scholar] [CrossRef]
- Yin, H.; Du, Y.; Kong, M.; Liu, C. Interactions of riverine suspended particulate matter with phosphorus inactivation agents across sediment-water interface and the implications for eutrophic lake restoration. Chem. Eng. J. 2017, 327, 150–161. [Google Scholar] [CrossRef]
- Wang, H.; Appan, A.; Gulliver, J.S. Modeling of phosphorus dynamics in aquatic sediments: I—Model development. Water Res. 2003, 37, 3928–3938. [Google Scholar] [CrossRef]
- Xu, G.; Sun, Z.; Fang, W.; Liu, J.; Xu, X.; Lv, C. Release of phosphorus from sediments under wave-induced liquefaction. Water Res. 2018, 144, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xue, B.; Bi, C.; Ren, X.; Liu, Y. Influence mechanisms of macro-infrastructure on micro-environments in the recirculating aquaculture system and biofloc technology system. Rev. Aquacult. 2023, 15, 991–1009. [Google Scholar] [CrossRef]
- Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Herbeck, L.S.; Unger, D.; Krumme, U.; Liu, S.M.; Jennerjahn, T.C. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuar. Coast. Shelf Sci. 2011, 93, 375–388. [Google Scholar] [CrossRef]
- Meerhoff, M.; Mazzeo, N.; Moss, B.; Rodríguez-Gallego, L. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquat. Ecol. 2003, 37, 377–391. [Google Scholar] [CrossRef]
- Yang, H.; Chang, Y.; Dong, X.; Wang, S.; Che, F.; Huang, W. The coupled effect of sediment resuspension and microbiota on phosphorus release and transformation in a simulated aquatic ecosystem. J. Water Process Eng. 2024, 57, 104653. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Sun, C.; Wang, N.; Zhang, Y. Adsorption of Arsenite by Six Submerged Plants from Nansi Lake, China. J. Chem. 2014, 2014, 450790. [Google Scholar] [CrossRef]
- Wang, L.; Wang, G.; Ge, X.; Yu, Z.; Gu, X.; Cheng, Z.; Xu, W.; Zhang, F. Influence of Submerged Plants on Phosphorus Fractions and Profiles of Sediments in Gucheng Lake. Soil Sediment Contam. 2012, 21, 640–654. [Google Scholar] [CrossRef]
- van der Grift, B.; Oste, L.; Schot, P.; Kratz, A.; van Popta, E.; Wassen, M.; Griffioen, J. Forms of phosphorus in suspended particulate matter in agriculture-dominated lowland catchments: Iron as phosphorus carrier. Sci. Total Environ. 2018, 631–632, 115–129. [Google Scholar] [CrossRef]
- O’Day, P.A.; Nwosu, U.G.; Barnes, M.E.; Hart, S.C.; Berhe, A.A.; Christensen, J.N.; Williams, K.H. Phosphorus Speciation in Atmospherically Deposited Particulate Matter and Implications for Terrestrial Ecosystem Productivity. Environ. Sci. Technol. 2020, 54, 4984–4994. [Google Scholar] [CrossRef]
- Hupfer, M.; Gloess, S.; Grossart, H.-P. Polyphosphate-accumulating microorganisms in aquatic sediments. Aquat. Microb. Ecol. 2007, 47, 299–311. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Wang, K.; Yang, H.; Chang, Y.; Huang, W.; Jiang, X. Phosphorus release and distribution in sediment resuspension systems under disturbing conditions. Chemosphere 2024, 359, 142386. [Google Scholar] [CrossRef]
- Zhang, S.; Yi, Q.; Buyang, S.; Cui, H.; Zhang, S. Enrichment of bioavailable phosphorus in fine particles when sediment resuspension hinders the ecological restoration of shallow eutrophic lakes. Sci. Total Environ. 2020, 710, 135672. [Google Scholar] [CrossRef]
- Ruban, V.; Lopez-Sanchez, J.F.; Pardo, P.; Rauret, G.; Muntau, H.; Quevauviller, P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments—A synthesis of recent works. Fresen. J. Anal. Chem. 2001, 370, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Curr. Contents/Agric. Biol. Environ. Sci. 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Huang, W.; Dong, X.; Tu, C.; Yang, H.; Chang, Y.; Yang, X.; Chen, H.; Che, F. Response mechanism of sediment endogenous phosphorus release to functional microorganisms and its cyanobacterial growth and disappearance effects. Sci. Total Environ. 2024, 906, 167676. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Jin, Z.; Che, F.; Cao, X.; Song, X.; Lu, C.; Huang, W. Characterization of phosphorus sorption and microbial community in lake sediments during overwinter and recruitment periods of cyanobacteria. Chemosphere 2022, 307, 135777. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, C.; Ma, T.; Guo, W.; Percival, L.; Baeyens, W.; Gao, Y. Anthropogenic activities influence the mobilization of trace metals and oxyanions in coastal sediment porewaters. Sci. Total Environ. 2022, 839, 156353. [Google Scholar] [CrossRef]
- Fan, X.; Xing, X.; Ding, S. Enhancing the retention of phosphorus through bacterial oxidation of iron or sulfide in the eutrophic sediments of Lake Taihu. Sci. Total Environ. 2021, 791, 148039. [Google Scholar] [CrossRef]
- Huang, W.; Cao, X.; Huang, D.; Liu, W.; Liu, X.; Zhang, J. Phosphorus characteristics and microbial community in the sediment-water-algal system during algal growth. Environ. Sci. Pollut. Res. 2019, 26, 31414–31421. [Google Scholar] [CrossRef]
- Tay, C.J.; Mohd, M.H.; Teh, S.Y.; Koh, H.L. Internal phosphorus recycling promotes rich and complex dynamics in an algae-phosphorus model: Implications for eutrophication management. J. Theor. Biol. 2022, 532, 110913. [Google Scholar] [CrossRef]
- Tu, C.; Dong, X.; Yang, H.; Chang, Y.; Xu, Z.; Che, F.; Wang, S.; Huang, W. Characterization of phosphate solubilizing bacteria in the sediments of eutrophic lakes and their potential for cyanobacterial recruitment. Chemosphere 2024, 352, 141276. [Google Scholar] [CrossRef] [PubMed]
- Ibeid, S.; Elektorowicz, M.; Oleszkiewicz, J.A. Impact of electrocoagulation of soluble microbial products on membrane fouling at different volatile suspended solids’ concentrations. Environ. Technol. 2017, 38, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Zhao, Z.; Yao, X.; Liu, W.; Zhang, L. Suspended solids induce increasing microbial ammonium recycling along the river-estuary continuum of the Yangtze River. Hydrol. Process. 2021, 35, e14345. [Google Scholar] [CrossRef]
- Li, W.-h.; Liu, Q.-z.; Chen, P. Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity. J. Integr. Agr. 2018, 17, 2570–2582. [Google Scholar] [CrossRef]
- Huang, Y.; Jiang, L.; Wu, B.; Liu, J.; Liu, Y.; Xie, L.; Zhou, M.; Deng, L.; Wang, W.; Wang, L. Effect of suspended solids from anaerobic digested wastewater on performance and microbial community of autotrophic nitrogen removal process. J. Clean. Prod. 2024, 450, 141973. [Google Scholar] [CrossRef]
- Yu, H.; Qi, W.; Cao, X.; Hu, J.; Li, Y.; Peng, J.; Hu, C.; Qu, J. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system? Environ. Int. 2021, 156, 106708. [Google Scholar] [CrossRef]
- Han, H.; Song, P.; Jiang, Y.; Fan, J.; Khan, A.; Liu, P.; Masek, O.; Li, X. Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles. J. Hazard. Mater. 2024, 474, 134838. [Google Scholar] [CrossRef]
- Chang, Y.; Dong, X.; Yang, X.; Chen, H.; Yang, H.; Huang, W. Temporal and Spatial Characterization of Sediment Bacterial Communities from Lake Wetlands in a Plain River Network Region. Separations 2023, 10, 535. [Google Scholar] [CrossRef]
- Fagervold, S.K.; Watts, J.E.M.; May, H.D.; Sowers, K.R. Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl. Environ. Microb. 2005, 71, 8085–8090. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Du, J.; Liu, Y.; Hu, L.; Wei, H.; Fang, J.; Liu, R. Biogeographic distribution, ecotype partitioning and controlling factors of Chloroflexi in the sediments of six hadal trenches of the Paciflc Ocean. Sci. Total Environ. 2023, 880, 163323. [Google Scholar] [CrossRef]
- Villa, A.; Folster, J.; Kyllmar, K. Determining suspended solids and total phosphorus from turbidity: Comparison of high-frequency sampling with conventional monitoring methods. Environ. Monit. Assess. 2019, 191, 605. [Google Scholar] [CrossRef] [PubMed]
- Sandstrom, S.; Futter, M.N.; Kyllmar, K.; Bishop, K.; O’Connell, D.W.; Djodjic, F. Particulate phosphorus and suspended solids losses from small agricultural catchments: Links to stream and catchment characteristics. Sci. Total Environ. 2020, 711, 134616. [Google Scholar] [CrossRef] [PubMed]
- Kharrat, H.; Karray, F.; Bartoli, M.; Ben Hnia, W.; Mhiri, N.; Fardeau, M.-L.; Bennour, F.; Kamoun, L.; Alazard, D.; Sayadi, S. Desulfobulbus aggregans sp nov., a Novel Sulfate Reducing Bacterium Isolated from Marine Sediment from the Gulf of Gabes. Curr. Microbiol. 2017, 74, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.E.; O’Neil, R.A.; Chavan, M.A.; N’Guessan, L.A.; Vrionis, H.A.; Perpetua, L.A.; Larrahondo, M.J.; DiDonato, R.; Liu, A.; Lovley, D.R. Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments. Isme J. 2009, 3, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Jose, P.A.; Jha, B. Intertidal marine sediment harbours Actinobacteria with promising bioactive and biosynthetic potential. Sci. Rep. 2017, 7, 10041. [Google Scholar] [CrossRef]
- Wunderlin, T.; Junier, T.; Roussel-Delif, L.; Jeanneret, N.; Junier, P. Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. Environ. Microbiol. Rep. 2014, 6, 631–639. [Google Scholar] [CrossRef]
- Duarte, B.; Sleimi, N.; Cacador, I. Sediment phosphorus speciation changes by extracellular enzymatic activity (EEA) of three phosphatase pH-dependent isoforms. Mar. Chem. 2022, 246, 104162. [Google Scholar] [CrossRef]
- Ding, Y.; Yi, Q.; Jia, Q.; Zhang, J.; Zhou, Z.; Liu, X. Quantifying phosphorus levels in water columns equilibrated with sediment particles in shallow lakes: From algae/cyanobacteria-available phosphorus pools to pH response. Sci. Total Environ. 2023, 868, 161694. [Google Scholar] [CrossRef]
- Albertsen, M.; McIlroy, S.J.; Stokholm-Bjerregaard, M.; Karst, S.M.; Nielsen, P.H. “Candidatus Propionivibrio aalborgensis”: A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants. Front. Microbiol. 2016, 7, 1033. [Google Scholar] [CrossRef]
- Tran, C.T.K.; Watts-Williams, S.J.; Smernik, R.J.; Cavagnaro, T.R. Effects of plant roots and arbuscular mycorrhizas on soil phosphorus leaching. Sci. Total Environ. 2020, 722, 137847. [Google Scholar] [CrossRef]
- Qu, Y.H.; Zhao, L.; Jin, Z.H.; Yang, H.R.; Tu, C.Q.; Che, F.F.; Russel, M.; Song, X.S.; Huang, W. Study on the management efficiency of lanthanum/iron co-modified attapulgite on sediment phosphorus load. Chemosphere 2023, 313, 137315. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Warnemuende, E.A.; Haggard, B.E.; Huang, C. Changes in sediment-water column phosphorus interactions following sediment disturbance. Ecol. Eng. 2006, 27, 71–78. [Google Scholar] [CrossRef]
- Fu, Z.; Hong, Z.; Wei, J.; Liao, Y.; You, S.; Wang, Y.; Lv, J.; Feng, H.; Kolencik, M.; Chang, X.; et al. Phosphorus fractionation and adsorption characteristics in drinking water reservoir inlet river sediments under human disturbance. J. Soils Sediments 2022, 22, 2530–2547. [Google Scholar] [CrossRef]
- Kim, J.W.; Ha, H.K.; Woo, S.B. Dynamics of sediment disturbance by periodic artificial discharges from the world’s largest tidal power plant. Estuar. Coast. Shelf Sci. 2017, 190, 69–79. [Google Scholar] [CrossRef]
- Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, C.D. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance. Geomorphology 2009, 105, 28–38. [Google Scholar] [CrossRef]
- Sun, D.; Liu, M.; Hou, L.; Zhao, M.; Tang, X.; Zhao, Q.; Li, J.; Han, P. Community structure and abundance of comammox Nitrospira in Chongming eastern intertidal sediments. J. Soils Sediments 2021, 21, 3213–3224. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Liu, Y.; Yang, H.; Ji, P.; Guo, Y. Study on Phosphorus Variability Characteristics and Response Mechanism of Microbial Community during Sediment Resuspension Process. Separations 2024, 11, 297. https://doi.org/10.3390/separations11100297
Zhang B, Liu Y, Yang H, Ji P, Guo Y. Study on Phosphorus Variability Characteristics and Response Mechanism of Microbial Community during Sediment Resuspension Process. Separations. 2024; 11(10):297. https://doi.org/10.3390/separations11100297
Chicago/Turabian StyleZhang, Bo, Yujia Liu, Haoran Yang, Peng Ji, and Yunyan Guo. 2024. "Study on Phosphorus Variability Characteristics and Response Mechanism of Microbial Community during Sediment Resuspension Process" Separations 11, no. 10: 297. https://doi.org/10.3390/separations11100297
APA StyleZhang, B., Liu, Y., Yang, H., Ji, P., & Guo, Y. (2024). Study on Phosphorus Variability Characteristics and Response Mechanism of Microbial Community during Sediment Resuspension Process. Separations, 11(10), 297. https://doi.org/10.3390/separations11100297