Changes in the Serum and Tissue Levels of Free and Conjugated Sialic Acids, Neu5Ac, Neu5Gc, and KDN in Mice after the Oral Administration of Edible Bird’s Nests: An LC–MS/MS Quantitative Analysis
Abstract
:1. Introduction
2. Experiments
2.1. Chemicals
2.2. Calibration Standards
2.3. LC–MS/MS System
2.4. LC–MS/MS Conditions
2.5. Sample Preparation
2.5.1. Free Sialic Acids in Serum
2.5.2. Conjugated Sialic Acids in Serum
2.5.3. Free Sialic Acids in Different Tissues
2.5.4. Conjugated Sialic Acids in Different Tissues
2.6. Method Validation
2.6.1. Calibration Curve, Linearity, and Sensitivity
2.6.2. Precision and Accuracy
2.6.3. Stability
2.6.4. Recovery
2.7. Animals
2.8. Statistical Analysis
3. Results and Discussion
3.1. Optimization of MS and Chromatography Conditions for Neu5Ac, Neu5Gc, and KDN
3.2. Sample Preparation
3.3. Method Validation
3.3.1. Linearity and Limits of Quantification
3.3.2. Precision and Accuracy
3.3.3. Extraction Recovery
3.4. Effect of Edible Bird’s Nest on Serum Free and Conjugated Sialic Acids Levels after Oral Administration for Seven Days
3.5. Effect of Edible Bird’s Nest on the Levels of Free and Conjugated Sialic Acids in Tissues after Oral Administration for Seven Days
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, T.H.; Wani, W.A.; Lee, C.H.; Cheng, K.K.; Shreaz, S.; Wong, S.; Hamdan, N.; Azmi, N.A. Edible bird’s nest: The functional values of the prized animal-based bioproduct from Southeast Asia—A review. Front. Pharmacol. 2021, 12, 626233. [Google Scholar] [CrossRef] [PubMed]
- Quek, M.C.; Chin, N.L.; Yusof, Y.A.; Law, C.L.; Tan, S.W. Characterization of edible bird’s nest of different production, species and geographical origins using nutritional composition, physicochemical properties and antioxidant activities. Food Res. Int. 2018, 109, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Chua, K.H.; Lee, T.H.; Nagandran, K.; Md Yahaya, N.H.; Lee, C.T.; Tjih, E.T.T.; Aziz, R.A. Edible bird’s nest extract as a chondro-protective agent for human chondrocytes isolated from osteoarthritic knee: In vitro study. BMC Complement. Altern. Med. 2013, 13, 19. [Google Scholar] [CrossRef]
- Loh, S.P.; Cheng, S.H.; Mohamed, W. Edible bird’s nest as a potential cognitive enhancer. Front. Neurol. 2022, 13, 865671. [Google Scholar] [CrossRef] [PubMed]
- Careena, S.; Sani, D.; Tan, S.N.; Lim, C.W.; Hassan, S.; Norhafizah, M.; Kirby, B.P.; Ideris, A.; Stanslas, J.; Basri, H.B.; et al. Effect of edible bird’s nest extract on lipopolysaccharide-induced impairment of learning and memory in wistar rats. Evid.-Based Complement Altern. Med. Evid. 2018, 2018, 9318789. [Google Scholar] [CrossRef]
- Al-Khaldi, K.; Yimer, N.; Sadiq, M.B.; Abdullah, F.F.J.B.; Salam Babji, A.; Al-Bulushi, S. Edible bird’s nest supplementation in chilled and cryopreserved Arabian stallion semen. Saudi J. Biol. Sci. 2022, 29, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Haghani, A.; Mehrbod, P.; Safi, N.; Kadir, F.A.A.; Omar, A.R.; Ideris, A. Edible bird’s nest modulate intracellular molecular pathways of influenza a virus infected cells. BMC Complement. Altern. Med. 2017, 17, 22. [Google Scholar] [CrossRef]
- Park, S.; Kim, I.S.; Park, S.Y.; Seo, S.A.; Yang, J.E.; Hwang, E. The protective effect of edible bird’s nest against the immune-senescence process of UVB-irradiated hairless mice. Photochem. Photobiol. 2022, 98, 949–957. [Google Scholar] [CrossRef]
- Fan, Y.; Fan, Y.; Liu, K.; Lonan, P.; Liao, F.; Huo, Y.; Zhong, X.; Liang, Y.; Wang, Y.; Hou, S.; et al. Edible bird’s nest ameliorates dextran sulfate sodium-induced ulcerative colitis in C57BL/6J mice by restoring the Th17/Treg cell balance. Front. Pharmacol. 2021, 12, 632602. [Google Scholar] [CrossRef] [PubMed]
- El Sheikha, A.F. Why the importance of geo-origin tracing of edible bird nests is arising? Food Res. Int. 2021, 150, 110806. [Google Scholar] [CrossRef]
- Ling, A.J.W.; Chang, L.S.; Babji, A.S.; Latip, J.; Koketsu, M.; Lim, S.J. Review of sialic acid’s biochemistry, sources, extraction and functions with special reference to edible bird’s nest. Food Chem. 2022, 367, 130755. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.; Severi, E.; Owen, C.D.; Latousakis, D.; Juge, N. Biochemical and structural basis of sialic acid utilization by gut microbes. J. Biol. Chem. 2023, 299, 102989. [Google Scholar]
- Ji, S.; Wang, F.; Chen, Y.; Yang, C.; Zhang, P.; Zhang, X.; Troy, F.A., 2nd; Wang, B. Developmental changes in the level of free and conjugated sialic acids, Neu5Ac, Neu5Gc and KDN in different organs of pig: A LC-MS/MS quantitative analyses. Glycoconjugate J. 2017, 34, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Saini, P.; Adeniji, O.S.; Abdel-Mohsen, M. Inhibitory Siglec-sialic acid interactions in balancing immunological activation and tolerance during viral infections. EBioMedicine 2022, 86, 104354. [Google Scholar] [CrossRef] [PubMed]
- Sui, D.; Li, C.; Tang, X.; Meng, X.; Ding, J.; Yang, Q.; Qi, Z.; Liu, X.; Deng, Y.; Song, Y. Sialic acid-mediated photochemotherapy enhances infiltration of CD8+ T cells from tumor-draining lymph nodes into tumors of immunosenescent mice. Acta Pharm. Sin. B 2023, 13, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Vázquez, E.; Barranco, A.; Ramírez, M.; Gruart, A.; Delgado-García, J.M.; Buck, R.; Rueda, R.; Martín, M.J. Sialic acid and sialylated oligosaccharide supplementation during lactation improves learning and memory in rats. Nutrients 2018, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Gruszewska, E.; Cylwik, B.; Panasiuk, A.; Szmitkowski, M.; Flisiak, R.; Chrostek, L. Total and free serum sialic acid concentration in liver diseases. BioMed Res. Int. 2014, 2014, 876096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wei, T.T.; Li, Y.; Li, J.; Fan, Y.; Huang, F.Q.; Cai, Y.Y.; Ma, G.; Liu, J.F.; Chen, Q.Q.; et al. Functional metabolomics characterizes a key role for N -acetylneuraminic acid in coronary artery diseases. Circulation 2018, 137, 1374–1390. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.L.; Conway, L.P.; Wang, M.M.; Huang, K.; Liu, L.; Voglmeir, J. Quantification of sialic acids in red meat by UPLC-FLD using indoxylsialosides as internal standards. Glycoconjugate J. 2016, 33, 219–226. [Google Scholar] [CrossRef]
- Nagai, Y.; Sakakibara, L.; Toyoda, H. Microdetermination of sialic acids in blood samples by hydrophilic interaction chromatography coupled to post-column derivatization and fluorometric detection. Anal. Sci. 2019, 35, 517–520. [Google Scholar] [CrossRef]
- Ye, L.; Mu, L.; Li, G.; Bao, Y. Assessing sialic acid content in food by hydrophilic chromatography-high performance liquid chromatography. J. Food Compos. Anal. 2020, 87, 103393. [Google Scholar] [CrossRef]
- Li, J.; Wu, T.; Zhang, X.; Du, Y.; Wei, B.; Wang, J. Clinical application of liver diseases diagnosis using ultrahigh-sensitive liquid chromatography-mass spectrometry for sialic acids detection. J. Chromatogr. A 2022, 1666, 462837. [Google Scholar] [CrossRef] [PubMed]
- Wylie, A.D.; Zandberg, W.F. Quantitation of sialic acids in infant formulas by Liquid Chromatography-Mass Spectrometry: An assessment of different protein sources and discovery of new analogues. J. Agric. Food Chem. 2018, 66, 8114–8123. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xie, B.; Wang, B.; Troy, F.A., 2nd. LC-MS/MS glycomic analyses of free and conjugated forms of the sialic acids, Neu5Ac, Neu5Gc and KDN in human throat cancers. Glycobiology 2015, 25, 1362–1374. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Kong, W.R.; Wang, N.; You, Y.L.; Wang, J.F.; Wang, S.Q. A serum metabolomics study based on LC-MS: Chemosensitization effects of Rauvolfia vomitoria Afzel. combined with 5- fluorouracil on colorectal cancer mice. J. Pharm. Biomed. Anal. 2022, 221, 115074. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liu, D.; Xin, B.; Cechner, K.; Zhou, X.; Wang, H.; Zhou, A. Quantification of monosialogangliosides in human plasma through chemical derivatization for signal enhancement in LC-ESI-MS. Anal. Chim. Acta 2016, 929, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Klaus, C.; Neumann, H. Control of innate immunity by sialic acids in the nervous tissue. Int. J. Mol. Sci. 2020, 21, 5494. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Cabello, T.M.; Gutiérrez-Valenzuela, L.D.; Salinas-Marín, R.; López-Guerrero, D.V.; Martínez-Duncker, I. Polysialic acid in the immune system. Front. Immunol. 2021, 12, 823637. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, D.L.; Pandey, S.; Alvarez, D.F.; Cioffi, E.A. Terminal sialic acids are an important determinant of pulmonary endothelial barrier integrity. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L1067–L1077. [Google Scholar] [CrossRef]
- Liu, F.; Tol, A.J.C.; Kuipers, F.; Oosterveer, M.H.; van der Beek, E.M.; van Leeuwen, S.S. Characterization of milk oligosaccharide and sialic acid content and their influence on brain sialic acid in a lean mouse model for gestational diabetes. Heliyon 2024, 10, e24539. [Google Scholar] [CrossRef]
Energy (V) | |||||
---|---|---|---|---|---|
Q1 | Q2 | CE | DP | Dwell | |
Neu5Ac | 308.1 | 86.9 | −18 | −50 | 100 |
Neu5Gc | 324.0 | 115.9 | −20 | −50 | 100 |
KDN | 267.0 | 87.0 | −20 | −50 | 100 |
IS | 311.1 | 90.0 | −20 | −50 | 100 |
Analytes | Linear Range (ng mL−1) | Regression Equation | Correlation Coefficient |
---|---|---|---|
Neu5Ac | 50.0–10,000.0 | Y = 0.000305X + 0.00155 | 0.996 |
Neu5Gc | 50.0–10,000.0 | Y = 0.000231X + 0.000308 | 0.996 |
KDN | 50.0–10,000.0 | Y = 0.00026X + 0.000239 | 0.995 |
Analytes | Spiked Concentration (ng mL−1) | Measured Concentration (ng mL−1) | Precision | Accuracy RE (%) | Recovery (%) | |
---|---|---|---|---|---|---|
Intra-Day RE (%) | Inter-Day RE (%) | |||||
Neu5Ac | 50 | 51.69 ± 3.0 | 6.2 | 6.4 | 3.28 | 87.5 |
500 | 510.39 ± 18.71 | 3.7 | 2.7 | 2.04 | 85.9 | |
3000 | 2719.11 ± 79.17 | 2.6 | 2.7 | 0.09 | 88.6 | |
Neu5Gc | 50 | 52.03 ± 3.09 | 6.2 | 6.6 | 3.90 | 85.0 |
500 | 485.11 ± 34.24 | 6.8 | 6.3 | 3.07 | 91.3 | |
3000 | 2890.56 ± 186.50 | 6.2 | 5.8 | 3.79 | 91.3 | |
KDN | 50 | 53.36 ± 3.5 | 7.0 | 5.4 | 6.29 | 86.4 |
500 | 522.72 ± 33.28 | 6.7 | 5.2 | 4.35 | 86.1 | |
3000 | 3092.22 ± 299.05 | 10.0 | 11.2 | 2.98 | 85.2 |
Group | Neu5Ac | Neu5Gc | KDN | ||||||
---|---|---|---|---|---|---|---|---|---|
Free (µg mL−1) | Conjugated (µg mL−1) | Total (µg mL−1) | Free (µg mL−1) | Conjugated (µg mL−1) | Total (µg mL−1) | Free (µg mL−1) | Conjugated (µg mL−1) | Total (µg mL−1) | |
Control | 1.22 ± 0.18 | 33.37 ± 0.73 | 34.58 ± 0.76 | 1.58 ± 0.26 | 2176.75 ± 137.07 | 2178.33 ± 137.32 | 0.08 ± 0.02 | 0.66 ± 0.07 | 0.73 ± 0.06 |
Low | 1.20 ± 0.13 | 36.24 ± 2.98 | 37.43 ± 3.03 | 1.27 ± 0.20 | 2565.40 ± 249.71 ** | 2566.67 ± 249.69 ** | 0.09 ± 0.01 | 0.65 ± 0.16 | 0.75 ± 0.17 |
High | 1.08 ± 0.09 | 32.28 ± 1.09 | 33.35 ± 1.11 | 1.22 ± 0.20 * | 2125.45 ± 111.91 | 2126.67 ± 112.01 | 0.09 ± 0.02 | 0.51 ± 0.23 | 0.60 ± 0.24 |
Neu5Ac | 1.16 ± 0.12 | 31.99 ± 2.11 | 33.15 ± 2.15 | 1.24 ± 0.23 * | 2118.76 ± 147.35 | 2120.00 ± 147.51 | 0.10 ± 0.01 | 0.55 ± 0.14 | 0.65 ± 0.13 |
Tissue | Group | Neu5Ac | Neu5Gc | KDN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Free (µg g−1) | Conjugated (µg g−1) | Total (µg g−1) | Free (µg g−1) | Conjugated (µg g−1) | Total (µg g−1) | Free (µg g−1) | Conjugated (µg g−1) | Total (µg g−1) | ||
Heart | Control | 37.15 ± 2.93 | 244.12 ± 102.39 | 281.26 ± 103.35 | 38.01 ± 3.84 | 457.87 ± 75.45 | 495.87 ± 76.94 | 1.84 ± 0.28 | 1.80 ± 0.56 | 3.64 ± 0.63 |
Low | 63.47 ± 5.79 **** | 375.19 ± 48.95 | 438.67 ± 45.17 * | 46.96 ± 5.84 | 608.25 ± 104.79 | 655.21 ± 104.70 | 2.34 ± 0.28 | 1.87 ± 0.66 | 4.22 ± 0.84 | |
High | 51.69 ± 3.11 **** | 304.54 ± 100.34 | 356.23 ± 100.24 | 34.95 ± 6.97 | 532.35 ± 94.22 | 567.30 ± 92.90 | 2.53 ± 0.48 * | 2.04 ± 0.86 | 4.57 ± 0.87 | |
Neu5Ac | 58.60 ± 7.41 *** | 241.40 ± 134.65 | 300.00 ± 139.58 | 43.57 ± 8.14 | 468.84 ± 147.52 | 512.41 ± 153.89 | 2.72 ± 0.46 ** | 3.10 ± 0.58 ** | 5.82 ± 0.82 *** | |
Liver | Control | 39.26 ± 8.37 | 25.15 ± 4.87 | 64.40 ± 12.48 | 88.68 ± 17.44 | 370.22 ± 122.56 | 458.90 ± 136.09 | 0.89 ± 0.40 | 0.70 ± 0.34 | 1.59 ± 0.65 |
Low | 53.43 ± 11.81 * | 27.91 ± 11.52 | 81.34 ± 21.76 | 112.50 ± 16.23 * | 389.59 ± 140.72 | 502.09 ± 155.36 | 1.12 ± 0.32 | 0.81 ± 0.23 | 1.93 ± 0.54 | |
High | 42.80 ± 5.75 | 31.32 ± 4.93 | 74.12 ± 6.90 | 81.23 ± 11.02 | 449.26 ± 109.14 | 530.48 ± 107.48 | 1.19 ± 0.55 | 0.91 ± 0.12 | 2.10 ± 0.54 | |
Neu5Ac | 50.99 ± 6.50 | 51.64 ± 39.76 | 102.63 ± 40.81 * | 98.77 ± 10.27 | 573.79 ± 338.95 | 672.56 ± 344.15 | 1.27 ± 0.32 | 1.23 ± 0.20 ** | 2.50 ± 0.39 * | |
Spleen | Control | 68.48 ± 9.98 | 137.86 ± 27.18 | 206.35 ± 36.76 | 83.70 ± 10.33 | 396.81 ± 91.22 | 480.51 ± 100.74 | 3.86 ± 0.89 | 4.82 ± 0.90 | 8.69 ± 1.61 |
Low | 86.70 ± 2.43 ** | 206.18 ± 39.36 ** | 292.88 ± 39.25 ** | 108.37 ± 7.68 ** | 493.05 ± 70.27 | 601.42 ± 66.80 * | 4.83 ± 0.93 | 6.13 ± 0.48 * | 10.96 ± 0.77 * | |
High | 80.71 ± 9.05 * | 190.09 ± 31.61 * | 270.80 ± 39.09 * | 102.79 ± 13.12 * | 550.74 ± 76.43 ** | 653.53 ± 79.61 ** | 4.88 ± 0.71 | 6.69 ± 0.91 ** | 11.57 ± 1.34 ** | |
Neu5Ac | 79.07 ± 7.96 | 184.63 ± 17.94 * | 263.70 ± 24.43 * | 102.77 ± 10.28 * | 485.46 ± 48.14 | 588.23 ± 54.04 | 4.88 ± 0.52 | 6.16 ± 0.68 * | 11.04 ± 1.18 * | |
Lungs | Control | 67.38 ± 14.11 | 155.84 ± 34.76 | 223.22 ± 34.88 | 104.06 ± 27.69 | 421.51 ± 93.71 | 525.56 ± 89.77 | 2.11 ± 0.43 | 2.74 ± 1.42 | 4.86 ± 1.55 |
Low | 77.90 ± 4.61 | 266.27 ± 41.79 ** | 344.16 ± 44.03 ** | 118.34 ± 12.22 | 691.91 ± 129.13 ** | 810.25 ± 132.50 ** | 3.96 ± 1.56 * | 2.48 ± 1.77 | 6.26 ± 1.47 | |
High | 79.67 ± 16.45 | 274.41 ± 70.40 * | 354.08 ± 82.39 * | 122.98 ± 39.86 | 650.53 ± 133.61 ** | 773.51 ± 154.24 ** | 2.97 ± 0.99 | 4.89 ± 1.40 * | 7.86 ± 2.32 * | |
Neu5Ac | 91.71 ± 11.44 ** | 262.04 ± 22.05 *** | 353.75 ± 15.81 *** | 150.29 ± 31.07 * | 568.49 ± 97.12 | 718.77 ± 89.54 * | 2.58 ± 0.50 | 4.41 ± 0.49 | 6.99 ± 0.91 | |
Kidney | Control | 30.47 ± 3.38 | 151.93 ± 36.66 | 182.39 ± 39.14 | 56.98 ± 6.29 | 406.21 ± 74.26 | 463.18 ± 75.65 | 0.98 ± 0.26 | 1.48 ± 0.86 | 2.46 ± 0.67 |
Low | 36.20 ± 4.41 * | 203.13 ± 86.46 | 239.32 ± 87.09 | 59.00 ± 10.48 | 469.93 ± 112.14 | 528.92 ± 118.62 | 1.05 ± 0.14 | 1.52 ± 0.61 | 2.57 ± 0.71 | |
High | 29.57 ± 2.29 | 175.62 ± 18.95 | 205.18 ± 20.75 | 38.80 ± 3.18 *** | 408.29 ± 82.74 | 447.09 ± 84.51 | 1.08 ± 0.47 | 0.73 ± 0.44 | 1.74 ± 0.35 | |
Neu5Ac | 34.06 ± 1.91 | 184.07 ± 15.02 | 218.13 ± 15.51 | 45.14 ± 4.01 * | 414.40 ± 57.34 | 459.54 ± 57.90 | 0.98 ± 0.14 | 1.17 ± 0.24 | 2.15 ± 0.25 | |
Brain | Control | 240.98 ± 27.64 | 1526.15 ± 1184.78 | 1767.13 ± 1185.38 | 4.36 ± 0.62 | 34.86 ± 18.04 | 39.22 ± 18.37 | 2.14 ± 0.40 | 0.83 ± 1.52 | 2.71 ± 1.88 |
Low | 264.79 ± 139.60 | 1187.79 ± 764.94 | 1452.58 ± 824.84 | 3.63 ± 1.91 | 26.70 ± 9.55 | 30.33 ± 10.53 | 2.47 ± 1.01 | 0.48 ± 0.79 | 2.39 ± 1.12 | |
High | 335.53 ± 135.56 | 1749.75 ± 1473.12 | 2085.28 ± 1442.80 | 4.80 ± 1.52 | 39.11 ± 13.37 | 43.91 ± 12.96 | 1.88 ± 0.83 | 1.43 ± 1.90 | 2.93 ± 1.90 | |
Neu5Ac | 281.46 ± 35.15 | 1146.10 ± 565.17 | 1427.56 ± 572.43 | 4.14 ± 0.22 | 37.53 ± 9.84 | 41.67 ± 9.72 | 1.19 ± 0.15 | 1.56 ± 1.26 | 2.65 ± 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.-H.; Wang, Z.-F.; Yuan, M.; Yang, C.-G.; Wang, D.-L.; Wang, S.-Q. Changes in the Serum and Tissue Levels of Free and Conjugated Sialic Acids, Neu5Ac, Neu5Gc, and KDN in Mice after the Oral Administration of Edible Bird’s Nests: An LC–MS/MS Quantitative Analysis. Separations 2024, 11, 107. https://doi.org/10.3390/separations11040107
Wang M-H, Wang Z-F, Yuan M, Yang C-G, Wang D-L, Wang S-Q. Changes in the Serum and Tissue Levels of Free and Conjugated Sialic Acids, Neu5Ac, Neu5Gc, and KDN in Mice after the Oral Administration of Edible Bird’s Nests: An LC–MS/MS Quantitative Analysis. Separations. 2024; 11(4):107. https://doi.org/10.3390/separations11040107
Chicago/Turabian StyleWang, Meng-Hua, Zhi-Fan Wang, Man Yuan, Chun-Guo Yang, Dong-Liang Wang, and Shu-Qi Wang. 2024. "Changes in the Serum and Tissue Levels of Free and Conjugated Sialic Acids, Neu5Ac, Neu5Gc, and KDN in Mice after the Oral Administration of Edible Bird’s Nests: An LC–MS/MS Quantitative Analysis" Separations 11, no. 4: 107. https://doi.org/10.3390/separations11040107
APA StyleWang, M. -H., Wang, Z. -F., Yuan, M., Yang, C. -G., Wang, D. -L., & Wang, S. -Q. (2024). Changes in the Serum and Tissue Levels of Free and Conjugated Sialic Acids, Neu5Ac, Neu5Gc, and KDN in Mice after the Oral Administration of Edible Bird’s Nests: An LC–MS/MS Quantitative Analysis. Separations, 11(4), 107. https://doi.org/10.3390/separations11040107