Study on the Efficiency of Fine Particle Removal in a Single-Tower Dual-Cycle Desulfurization Process Utilizing Heterogeneous Condensation
Abstract
:1. Introduction
2. Experiment System and Numerical Calculation
2.1. Experimental System
2.2. Measure Methods
2.3. Numerical Simulation
3. Results and Discussion
3.1. The Effect of Heterogeneous Condensation on the Removal Performance of Fine Particles under Typical Condition
3.2. Influence of the Temperature Drop of the Desulfurized Slurry
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Kong, X.; Guo, C.; Lin, Z.; Duan, S.; He, J.; Ren, Y.; Ren, J. Experimental study on the control effect of different ventilation systems on fine particles in a simulated hospital ward. Sustain. Cities Soc. 2021, 73, 103102. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wang, Y.; Lu, T.; Liu, K.; Huang, C. High performance, environmentally friendly and sustainable nanofiber membrane filter for removal of particulate matter 1.0. J. Colloid Interface Sci. 2021, 597, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Liu, X.; Han, J.; Zou, Y.; Huang, Y.; Wang, H.; Liu, L.; Xu, M. Study on the removal characteristics of different air pollution control devices for condensable particulate matter in coal-fired power plants. Environ. Sci. Pollut. Res. 2022, 29, 34714–34724. [Google Scholar] [CrossRef]
- Hannun, R.M.; Razzaq, A.H.A. Air pollution resulted from coal, oil and gas firing in thermal power plants and treatment: A Review. IOP Conf. Ser. Earth Environ. Sci. 2022, 1002, 012008. [Google Scholar] [CrossRef]
- Wu, X.; Liu, W.; Gao, H.; Alfaro, D.; Sun, S.; Lei, R.; Jia, T.; Zheng, M. Coordinated effects of air pollution control devices on PAH emissions in coal-fired power plants and industrial boilers. Sci. Total Environ. 2021, 756, 144063. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gonze, E.; Ondarts, M.; Outin, J.; Gonthier, Y. Electrostatic precipitator for fine and ultrafine particle removal from indoor air environments. Sep. Purif. Technol. 2020, 247, 116964. [Google Scholar] [CrossRef]
- Hsu, C.-J.; Atkinson, J.D.; Chung, A.; Hsi, H.-C. Gaseous mercury re-emission from wet flue gas desulfurization wastewater aeration basins: A review. J. Hazard. Mater. 2021, 420, 126546. [Google Scholar] [CrossRef]
- Zhang, Y.; Diehl, A.; Lewandowski, A.; Gopalakrishnan, K.; Baker, T. Removal efficiency of micro- and nanoplastics (180 nm–125 μm) during drinking water treatment. Sci. Total Environ. 2020, 720, 137383. [Google Scholar] [CrossRef]
- Devi, M.K.; Karmegam, N.; Manikandan, S.; Subbaiya, R.; Song, H.; Kwon, E.E.; Sarkar, B.; Bolan, N.; Kim, W.; Rinklebe, J.; et al. Removal of nanoplastics in water treatment processes: A review. Sci. Total. Environ. 2022, 845, 157168. [Google Scholar] [CrossRef]
- Liu, F.; Lou, Y.; Xia, F.; Hu, B. Immobilizing nZVI particles on MBenes to enhance the removal of U(VI) and Cr(VI) by adsorption-reduction synergistic effect. Chem. Eng. J. 2023, 454, 140318. [Google Scholar] [CrossRef]
- Oyjinda, P.; Pochai, N. A Mathematical Model of Hazardous Smoke Emission Control Considering Primary and Secondary Pollution Concentrations. Eng. Lett. 2024, 32, 193–200. [Google Scholar]
- Pang, X.; Liu, W.; Xu, H.; Hong, Q.; Cui, P.; Huang, W.; Qu, Z.; Yan, N. Selective uptake of gaseous sulfur trioxide and mercury in ZnO-CuS composite at elevated temperatures from SO2-rich flue gas. Chem. Eng. J. 2022, 427, 132035. [Google Scholar] [CrossRef]
- Hong, Q.; Xu, H.; Pang, X.; Liu, W.; Liu, Z.; Huang, W.; Qu, Z.; Yan, N. Reverse conversion treatment of gaseous sulfur trioxide using metastable sulfides from sulfur-rich flue gas. Environ. Sci. Technol. 2022, 56, 10935–10944. [Google Scholar] [CrossRef]
- Herzer, D.; Schmelmer, N. The effects of greenfield foreign direct investment and cross-border mergers and acquisitions on energy intensity in upper-middle income countries and low- and lower-middle income countries. Appl. Econ. 2022, 54, 4732–4750. [Google Scholar] [CrossRef]
- Sharma, A.K.; Liang, H.; Xu, R.; Ozdemir, E.; Miwa, S.; Terabayashi, R.; Suzuki, S.; Pellegrini, M.; Hasegawa, S.; Erkan, N. Radioactive aerosol control and decontamination in the decommissioning of the Fukushima Daiichi nuclear power station. Nucl. Technol. 2023, 209, 2030–2043. [Google Scholar] [CrossRef]
- Guo, D.; Cao, X.; Zhang, P.; Ding, G.; Liu, Y.; Cao, H.; Bian, J. Heterogeneous condensation mechanism of methane-hexane binary mixture. Energy 2022, 256, 124627. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H. A review of bulk nanobubbles and their roles in flotation of fine particles. Powder Technol. 2022, 395, 618–633. [Google Scholar] [CrossRef]
- Wang, W.; Lin, Y.; Yang, H.; Ling, W.; Liu, L.; Zhang, W.; Lu, D.; Liu, Q.; Jiang, G. Internal exposure and distribution of airborne fine particles in the human body: Methodology, current understandings, and research needs. Environ. Sci. Technol. 2022, 56, 6857–6869. [Google Scholar] [CrossRef]
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Saha, P.K.; Robinson, A.L.; Presto, A.A.; Subramanian, R. Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. Aerosol Sci. Technol. 2020, 54, 160–174. [Google Scholar] [CrossRef]
- Yabo, S.D.; Fu, D.L.; Li, B.; Ma, L.X.; Shi, X.F.; Lu, L.; Xie, S.J.; Meng, F.; Jiang, J.P.; Zhang, W.; et al. Synergistic interactions of fine particles and radiative effects in modulating urban heat islands during winter haze event in a cold megacity of Northeast China. Environ. Sci. Pollut. Res. 2023, 30, 58882–58906. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Gao, Y.; Chen, L.; Zhang, Y.; Zeng, Q.; Dong, K.; Wei, Y.; Wang, B. Promoting the removal of fine particles by surfactants in a novel cyclone with heterogeneous-condensation agglomeration: A combined experimental and molecular dynamics study. Fuel 2022, 327, 125217. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, H.; Sun, Y.; Long, H.; Zheng, Z. Heterogeneous condensation for electric arc furnaces fine particles removal. Powder Technol. 2020, 374, 323–329. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhang, J.; Liu, H.; Shao, Q.; Chu, H. Progress in the heterogeneous condensation of water vapor for PM2.5 removal. Powder Technol. 2023, 427, 118701. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, J.; Liu, X.; Wu, H.; Guan, Q.; Zeng, G.; Yang, L. Improving the electrostatic precipitation removal efficiency on fine particles by adding wetting agent during the chemical agglomeration process. Fuel Process. Technol. 2022, 230, 107202. [Google Scholar] [CrossRef]
- Böttcher, A.-C.; Thon, C.; Fragnière, G.; Chagas, A.; Schilde, C.; Kwade, A. Rigidly-mounted roll mill as breakage tester for characterizing fine particle breakage. Powder Technol. 2021, 383, 554–563. [Google Scholar] [CrossRef]
- Fan, F.X. Study on Growth Mechanisms of Inhalable Particles in Acoustic Field and in Supersaturated Vapor Environment. Ph.D. Thesis, Southeast University, Nanjing, China, 2008. [Google Scholar]
- Bao, J.J.; Yang, L.J.; Yan, J.P.; Xiong, G.L.; Lu, B.; Xin, C.Y. Experimental study of fine particles removal in the desulfurated scrubbed flue gas. Fuel 2013, 108, 73–79. [Google Scholar] [CrossRef]
- Wu, H.; Pan, D.; Huang, R.; Hong, G.; Yang, B.; Peng, Z.; Yang, L. Abatement of fine particle emission by heterogeneous vapor condensation during wet limestone-gypsum flue gas desulfurization. Energy Fuels 2016, 30, 6103–6109. [Google Scholar] [CrossRef]
- Abduljabbar, A.; Mohyaldinn, M.E.; Ridha, S.; Younis, O.; Alakbari, F.S. CFD-based erosion modelling of sand screen using dense discrete phase model: Investigating carrier fluid type effect. Adv. Powder Technol. 2023, 34, 104144. [Google Scholar] [CrossRef]
- Fuhrman, D.R.; Li, Y. Instability of the realizable k–ε turbulence model beneath surface waves. Phys. Fluids 2020, 32, 115108. [Google Scholar] [CrossRef]
- Cai, J.; Han, Y.; Xiang, G.; Wang, C.; Wang, L.; Chen, S. Influence of the mass conservation cavitation boundary on the tribo-dynamic responses of the micro-groove water-lubricated bearing. Surf. Topogr. Metrol. Prop. 2022, 10, 045011. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mani, A. Consistent, energy-conserving momentum transport for simulations of two-phase flows using the phase field equations. J. Comput. Phys. 2021, 426, 109918. [Google Scholar] [CrossRef]
- Lou, S.; Chen, X.; Liu, J.; Shi, Y.; Qu, H.; Wang, Y.; Cai, H. Fast OCT image enhancement method based on the sigmoid-energy conservation equation. Biomed. Opt. Express 2021, 12, 1792–1803. [Google Scholar] [CrossRef]
- Aguerre, H.J.; Venier, C.M.; Pairetti, C.I.; Damián, S.M.; Nigro, N.M. A SIMPLE-based algorithm with enhanced velocity corrections: The COMPLEX method. Comput. Fluids 2020, 198, 104396. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, R.; Dong, S.; Wang, Y.; Dong, K.; Wei, Y.; Wang, B. Heterogeneous condensation combined with inner vortex broken cyclone to achieve high collection efficiency of fine particles and low energy consumption. Powder Technol. 2021, 382, 420–430. [Google Scholar] [CrossRef]
- Kulmala, M.; Cai, R.; Stolzenburg, D.; Zhou, Y.; Dada, L.; Guo, Y.; Yan, C.; Petäjä, T.; Jiang, J.; Kerminen, V.-M. The contribution of new particle formation and subsequent growth to haze formation. Environ. Sci. Atmos. 2022, 2, 352–361. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, H.; Si, X.; Zhao, L.; Yang, L. Improving the removal of fine particulate matter based on heterogeneous condensation in desulfurized flue gas. Fuel Process. Technol. 2018, 174, 9–16. [Google Scholar] [CrossRef]
- Yan, J.P. Study on Fine Particles Removal from Coal Combustion Improved by Vapor Condensational Growth. Ph.D. Thesis, Southeast University, Nanjing, China, 2009. [Google Scholar]
- Zhang, Y.; Jiang, Y.; Xin, R.; Yu, G.; Jin, R.; Dong, K.; Wang, B. Effect of particle hydrophilicity on the separation performance of a novel cyclone. Sep. Purif. Technol. 2020, 237, 116315. [Google Scholar] [CrossRef]
Operating Parameters | Numerical Value |
---|---|
Temperature of desulfurization slurry (°C) | 40, 35, 32, 30, 20 |
Temperature of flue gas (°C) | 100, 110, 120, 130, 140 |
Liquid to gas ratio (L/Nm3) | 5, 10, 15, 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Mnipela, Z.A.; Yang, L.; Si, X. Study on the Efficiency of Fine Particle Removal in a Single-Tower Dual-Cycle Desulfurization Process Utilizing Heterogeneous Condensation. Separations 2024, 11, 192. https://doi.org/10.3390/separations11070192
Zhang R, Mnipela ZA, Yang L, Si X. Study on the Efficiency of Fine Particle Removal in a Single-Tower Dual-Cycle Desulfurization Process Utilizing Heterogeneous Condensation. Separations. 2024; 11(7):192. https://doi.org/10.3390/separations11070192
Chicago/Turabian StyleZhang, Rui, Zulpher Ahmad Mnipela, Linjun Yang, and Xiaodong Si. 2024. "Study on the Efficiency of Fine Particle Removal in a Single-Tower Dual-Cycle Desulfurization Process Utilizing Heterogeneous Condensation" Separations 11, no. 7: 192. https://doi.org/10.3390/separations11070192
APA StyleZhang, R., Mnipela, Z. A., Yang, L., & Si, X. (2024). Study on the Efficiency of Fine Particle Removal in a Single-Tower Dual-Cycle Desulfurization Process Utilizing Heterogeneous Condensation. Separations, 11(7), 192. https://doi.org/10.3390/separations11070192