The Mechanism of Air Blocking in the Impeller of Multiphase Pump
Abstract
:1. Introduction
2. Physical Model and Numerical Methods
2.1. Geometric Model
2.2. Numerical Methods
2.2.1. Meshing and Independence Verification
2.2.2. Numerical Methods
- is the mixture density;
- is the dynamic viscosity of the mixture;
- is the mixture velocity;
- is the mixture pressure;
- is the acceleration of gravity;
- is the body force.
- ρ is the mixture density;
- keff is the effective thermal conductivity;
- τeff is the effective viscosity;
- Sh is the source phase;
- Jj is the diffusion flux of component j.
2.3. Experimental Validation
3. Analysis of Results
3.1. Accumulation of Bubbles in Impeller Runner
3.2. Analysis of Vortex Motion in Mixed Transport Pump
3.3. Blockage of Impeller Runner by Air Mass
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S. A preliminary understanding of multi-phase mixed transport pumps. Oil Gas Field Surf. Eng. 1995, 14, 3. [Google Scholar]
- Wang, Y. Review of multi-phase pump and multi-phase flow mixed transport technology abroad. Oil Gas Field Surf. Eng. 1996, 15, 7. [Google Scholar]
- Zhang, W.; Xue, D. Research progress of multiphase flow pumps abroad. Pump Technol. 1995, 6, 7. [Google Scholar]
- Yu, X.; Zhao, J.; Wu, Y. Research on oil-gas-water multiphase pipe flow technology at home and abroad. China Offshore Oil Gas 2002, 14, 7. [Google Scholar]
- Yong, W.; Dong, W. Development, design and economic evaluation of Poseidon p302 multiphase pump. Nat. Gas Oil 1997, 15, 6. [Google Scholar]
- Xu, F.; Fang, J.; Zhao, F. Optimization and experimental study of Structural parameters of spiral axial flow oil and gas mixed transport pump. J. Oil Gas Technol. 2005, 5, 833–835. [Google Scholar]
- Zhao, X. Experimental Study on Gas-Liquid Two-Phase Characteristics of Spiral Axial Flow Multi-Phase Mixed Transport Pump. Master’s Thesis, China University of Petroleum (East China), Dongying, China, 2007. [Google Scholar]
- Li, X. Development and Experiment of Spiral Axial Flow Oil and Gas Mixed Transport Pump. Southwest Petroleum University: Chengdu, China, 2014. [Google Scholar]
- Chen, S. Analysis and Experimental Study of Flow Field in Water Chamber of Axial Flow Oil and Gas Mixed Transport Pump. 2002. [Google Scholar]
- Liu, X. External Characteristic Test and Numerical Simulation of Spiral Axial Flow Multiphase Pump. China University of Petroleum, Beijing, China, 2009. [Google Scholar]
- Zhang, J.; Cai, S.; Zhu, H.; Qiang, R. Experimental Study of Gas-Liquid Two-Phase Flow Pattern in a Helico-Axial Multiphase Pump by Visualization. J. Eng. Thermophys. 2015, 36, 1937–1941. [Google Scholar]
- Zhu, R.; Lin, P.; Wang, Z.; Long, Y. Design and experiment for screw axial-flow pumps. J. Huazhong Univ. Sci. Technol. 2013. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, S.; Li, Y.; Zhu, H.; Zhang, Y. Optimization design of multiphase pump impeller based on combined genetic algorithm and boundary vortex flux diagnosis. J. Hydrodyn. Ser. B 2017, 29, 1023–1034. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, H.; Wei, H. Three-Dimensional Blade Design of Helico-Axial Multiphase Pump Impeller Based on Numerical Solution of Meridian Flow Net and Blade Mean Camber Lines. In Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, Hamamatsu, Japan, 24–29 July 2011; pp. 163–170. [Google Scholar]
- Liu, M.; Cao, S.; Cao, S. Numerical analysis for interphase forces of gas-liquid flow in a multiphase pump. Eng. Comput. 2018, 35, 2386–2402. [Google Scholar] [CrossRef]
- Yu, Z.; Zhu, B.; Cao, S. Interphase force analysis for air-water bubbly flow in a multiphase rotodynamic pump. Eng. Comput. 2015, 32, 2166–2180. [Google Scholar] [CrossRef]
- Yu, Z.; Zhu, B.; Cao, S.; Liu, Y. Effect of Virtual Mass Force on the Mixed Transport Process in a Multiphase Rotodynamic Pump. Adv. Mech. Eng. 2015, 6, 958352. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, S.; Li, Y.; Zhu, H.; Zhang, Y. Visualization study of gas–liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump. Exp. Therm. Fluid Sci. 2016, 70, 125–138. [Google Scholar] [CrossRef]
- Murakami, M.; Minemura, K. Behavior of air bubbles in an axial-flow pump impeller. J. Fluids Eng. 1983, 105, 277–283. [Google Scholar] [CrossRef]
- Minemura, K.; Murakami, M. A theoretical study on air bubble motion in a centrifugal pump impeller. J. Fluids Eng. 1980, 102, 446–453. [Google Scholar] [CrossRef]
- Minemura, K.; Uchiyama, T. Three-Dimension Calculation of Air-Water Two-Phase Flow in Centrifugal Pump Impeller Based on a Bubby Flow Model with Fixed Cavity. JSME Intern. J. Ser. B 1994, 37, 726–735. [Google Scholar] [CrossRef]
- Minemura, K.; Uchiyama, T.; Shoda, S.; Egashira, K. Prediction of Air-Water Two-Phase Flow Performance of a Centrifugal Pump Based on One-Dimensional Two-Fluid Model. J. Fluids Eng. Trans. Asme 1998, 120, 327–334. [Google Scholar] [CrossRef]
- Van Sint Annaland, M.; Deen, N.G.; Kuipers, J.A.M. Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem. Eng. Sci. 2005, 60, 2999–3011. [Google Scholar] [CrossRef]
- Yu, Z.; Cao, S.; Wang, G. Three-dimensional numerical model of gas-liquid two-phase flow in a vane pump. J. Beijing Inst. Technol. 2007, 27, 1057–1060. [Google Scholar]
- Yu, Z.; Cao, S.; Wang, G. Numerical calculation of gas-liquid two-phase flow in a vane mixed transport pump. Chin. J. Eng. Thermophys. 2007, 28, 3. [Google Scholar]
- Pang, C.; Yuan, S. Geometric and Dynamic Characteristics of bubbles in cross flow. J. Drain. Irrig. Mach. Eng. 2020, 38, 1023–1029. [Google Scholar]
- Numerical Modeling; Studies from Tsinghua University Have Provided NewData on Numerical Modeling (Numerical analysis for interphase forces of gas-liquid flow in a multiphase pump). J. Technol. Sci. 2018.
- Li, Q.; Xue, D. Study on phase separation process in vane multiphase pump. J. China Univ. Pet. (Ed. Nat. Sci.) 1997, 3, 53–56. [Google Scholar]
- Huang, S.; Wu, Y. Three-dimensional Numerical Calculation of gas-liquid Two-phase bubble Flow in Vane Pump. J. Hydraul. Eng. 2001, 5, 57–61. [Google Scholar]
- Zhang, K. Numerical Study on Reconfiguration and Internal Two-Phase Flow Characteristics of Gas-Liquid Mixed Transport Pump. Xi’an University of Technology University, Xi’an, Chana, 2019. [Google Scholar]
- Wang, C. Parametric 3D Modeling and Wear Characteristics Analysis of Mixed-Flow Desulfurization Pump. North China Electric Power University, Beijing, China, 2010. [Google Scholar]
- Yang, H. Numerical Simulation of Gas-Liquid Two-Phase Flow in Pneumatic Lifting Pump. Xi’an University of Technology: Xi’an, Chana, 2020. [Google Scholar]
- Li, W.; Li, Z.; Han, W.; Li, Y.; Yan, S.; Zhao, Q.; Gu, Z. Pumping-velocity variation mechanisms of a ferrofluid micropump and structural optimization for reflow inhibition. Phys. Fluids 2023, 35, 052005. [Google Scholar]
- Wang, J.; Zha, H.; McDonough, J.M.; Zhang, D. Analysis and numerical simulation of a novel gas–liquid multiphase scroll pump. Int. J. Heat Mass Transf. 2015, 91, 27–36. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSY Fluent Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2018. [Google Scholar]
- de Salis, J.; Cordner, M.; Birnov, M. Multiphase pumping comes of age. World Pumps 1998, 1998, 53–54. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Qiu, X.; Chen, F.P.; Liu, K.H.; Zhang, Y.N.; Dong, X.R.; Liu, C.Q. A selected review of vortex identification methods with applications. J. Hydrodyn. 2018, 30, 767–779. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Liu, K.H.; Xian, H.Z.; Du, X. A review of methods for vortex identification in hydroturbines. Renew. Sustain. Energy Rev. 2018, 81, 1269–1285. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Zhang, Y.N.; Wu, Y.L. A review of rotating stall in reversible pump turbine. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2017, 231, 1181–1204. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Zheng, X.H.; Li, J.W.; Du, X. Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station. Renew. Energy 2019, 130, 667–676. [Google Scholar] [CrossRef]
Parameter | Numerical Value |
---|---|
Rotational speed n/(r/min) | 3000 |
Head H/m | 30 |
Design flow rate Qd/(m3/h) | 120 |
Main Structural Parameters of Impeller | |
---|---|
Main Structural Parameter | Value |
Diameter D (mm) | 150 |
Number of blades Z | 4 |
Half cone angle of the hub γ (°) | 6 |
Axial length e (mm) | 55 |
Inlet angle of the blade (°) | 10 |
Outlet angle of the blade β2 (°) | 14 |
Main Structural Parameters of Guide Vanes | |
Main Structural Parameter | Value |
Diameter D (mm) | 150 |
Number of blades Z | 17 |
Half cone angle of the hub γ (°) | 6 |
Axial length e (mm) | 55 |
Inlet angle of the blade (°) | 38 |
Outlet angle of the blade β2 (°) | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Han, W.; Xue, T.; Qiang, P.; Li, R.; Mi, J. The Mechanism of Air Blocking in the Impeller of Multiphase Pump. Separations 2024, 11, 212. https://doi.org/10.3390/separations11070212
Zhang S, Han W, Xue T, Qiang P, Li R, Mi J. The Mechanism of Air Blocking in the Impeller of Multiphase Pump. Separations. 2024; 11(7):212. https://doi.org/10.3390/separations11070212
Chicago/Turabian StyleZhang, Sicong, Wei Han, Tongqing Xue, Pan Qiang, Rennian Li, and Jiandong Mi. 2024. "The Mechanism of Air Blocking in the Impeller of Multiphase Pump" Separations 11, no. 7: 212. https://doi.org/10.3390/separations11070212
APA StyleZhang, S., Han, W., Xue, T., Qiang, P., Li, R., & Mi, J. (2024). The Mechanism of Air Blocking in the Impeller of Multiphase Pump. Separations, 11(7), 212. https://doi.org/10.3390/separations11070212