An Extraction Process Based on the Collaborative Extraction of Coptis chinensis Franch. Phytoconstituents Using a Deep Eutectic Solvent and an Organic Solvent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of C. chinensis Powder
2.3. Synthesis of DES
2.4. Preparation of Aqueous DES
2.5. Extraction of the Effective Components of C. chinensis Using DES
2.6. Content Determination
2.7. GC-MS
2.8. SEM
2.9. Infrared Spectroscopy
3. Results and Discussion
3.1. Method Validation
3.1.1. Linear Relationship
3.1.2. Sample Recovery
3.2. Effect of DES with Different Water Content Levels on the Extraction Rate of C. chinensis
3.3. Optimization of DES Extraction
3.4. Secondary Extraction of C. chinensis Residue after Extraction with DES
3.5. Structural Characterization of C. chinensis Powder Extracted Using DES at Different Stages
3.5.1. The Effect of Different Extraction Stages on the Morphology of C. chinensis Powder
3.5.2. Comparison of the Infrared Spectra of C. chinensis Powder at Different Extraction Stages
3.6. Methodological Summary
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chinese Pharmacopoeia; China Medical Science and Technology Press: Beijing, China, 2015; Volume 1, p. 303.
- China National Medicinal Materials Corporation. Chinese Traditional Medicine Resources; Science Press: Beijing, China, 1993; p. 233. [Google Scholar]
- Luan, L.; Xiao, Y.Q.; Li, L.; Zhang, C.; Yu, D.R.; Ma, Y.L. Characterization of the traditional Chinese medicine Yuhuanglian by HPLC-ESIMS. Anal. Lett. 2014, 47, 911–922. [Google Scholar] [CrossRef]
- Huang, P.; Qian, X.; Li, J.; Cui, X.; Chen, L.; Cai, B.; Tan, S. Simultaneous determination of 11 alkaloids in crude and wine-processed Rhizoma coptidis by HPLC-PAD. J. Chromatogr. Sci. 2015, 53, 73–78. [Google Scholar] [CrossRef]
- Feng, X.; Wang, K.; Hu, X.; Chai, L.; Cao, S.; Ding, L.; Qiu, F. Systematic screening and characterization of absorbed constituents and in vivo metabolites in rats after oral administration of Rhizoma coptidis using UPLC-Q-TOF/MS. Biomed. Chromatogr. 2020, 34, e4919. [Google Scholar] [CrossRef]
- Li, Z.F.; Wang, Q.; Chen, G.; Hua, H.M.; Yang, S.L.; Feng, Y.L.; Pei, Y.H. A new pyrrolidine derivative from the rhizome of Coptis chinensis. Chem. Nat. Compd. 2013, 49, 493–494. [Google Scholar] [CrossRef]
- Teng, H.; Choi, Y.H. Optimization of extraction of total alkaloid content from rhizome coptidis (Coptis chinensis Franch) using response surface methodology. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 303–309. [Google Scholar] [CrossRef]
- Lou, G.; Xiong, H.; Gan, Q.; Hu, J.; Peng, C.; Yan, Z.; Yan, H.; Huang, Q. UPLC-Q-Orbitrap HRMS analysis of Coptis chinensis aerial parts and its regulatory activity on glucose-lipid metabolism. Rev. Bras. Farmacogn. 2021, 31, 24–31. [Google Scholar] [CrossRef]
- Fan, G.; Tao, L.H.; Yue, Q.H.; Kuang, T.T.; Tang, C.; Yang, Y.D.; Luo, W.Z.; Zhou, X.D.; Zhang, Y. Metabolic discrimination of Rhizoma coptidis from different species using 1H NMR spectroscopy and principal component analysis. Planta Med. 2012, 78, 641–648. [Google Scholar] [CrossRef]
- Li, J.; Zhao, A.; Li, D.; He, Y. Comparative study of the free amino acid compositions and contents in three different botanical origins of coptis herb. Biochem. Syst. Ecol. 2019, 83, 117–120. [Google Scholar] [CrossRef]
- Wang, L.; Yang, W.; Zhu, J.Q.; Huang, Y.; Zhong, M.; Loo, S.K.F.; Ip, S.P.; Xian, Y.F.; Lin, Z.X. Sub-chronic toxicity of the active fraction of a modified Huang-Lian-Jie-Du Decoction. Toxicol. Rep. 2024, 13, 101682. [Google Scholar] [CrossRef]
- Wei, L.; Mi, S.; Wei, L.; Pu, D.; Zhu, M.; Lu, Q.; Chen, C.; Zu, Y. Integrated extraction-purification and anti-inflammatory activity of berberine-rich extracts from Coptis chinensis Franch. Ind. Crops Prod. 2023, 202, 117029. [Google Scholar] [CrossRef]
- Fan, D.L.; Ao, X.H.; Ma, X.J. Calorimetric study of the effect of protoberberine alkaloids in Coptis chinensis Franch on Staphylococcus aureus growth. Thermochim. Acta 2008, 480, 49–52. [Google Scholar] [CrossRef]
- Fu, L.; Fu, Q.; Li, J.; Tong, X. Research progress on chemical constituents and pharmacology of Coptis chinensis. Acta Chin. Med. Pharmacol. 2021, 49, 87–92. [Google Scholar]
- Zhao, M.M.; Lu, J.; Li, S.; Wang, H.; Cao, X.; Li, Q.; Shi, T.T.; Matsunaga, K.; Chen, C.; Huang, H.; et al. Berberine is an insulin secretagogue targeting the KCNH6 potassium channel. Nat. Commun. 2021, 12, 5616. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Yan, X.; Yan, X.G.; Huang, F.; Li, J.; Xiao, J.C.; Li, Y. Modulation of gut microbiota by berberine and decocted Coptis chinensis Franch. in a high-fat diet-induced metabolic syndrome rat model. J. Tradit. Chin. Med. Sci. 2017, 4, 149–157. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, R.; Chen, Q.; Zhang, Q.; Wu, J.; Yin, D. Coptis chinensis polysaccharides dynamically influence the paracellular absorption pathway in the small intestine by modulating the intestinal mucosal immunity microenvironment. Phytomedicine 2022, 104, 154322. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Liu, M.L.; Ren, S.; Yang, H.; Zeng, S.; Chen, L.; Zhao, H.; Ming, T.Q.; Xu, H.B. Research progress in anti-colorectal cancer mechanism of berberine. Acta Pharm. Sin. 2022, 57, 343–352. [Google Scholar]
- Yu, M.; Ren, L.; Liang, F.; Zhang, Y.; Jiang, L.; Ma, W.; Li, C.; Li, X.; Ye, X. Effect of epiberberine from Coptis chinensis Franch on inhibition of tumor growth in MKN-45 xenograft mice. Phytomedicine 2020, 76, 153216. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Choi, Y.H. Optimization of ultrasonic-assisted extraction of bioactive alkaloid compounds from Rhizoma coptidis (Coptis chinensis Franch.) using response surface methodology. Food Chem. 2014, 142, 299–305. [Google Scholar] [CrossRef]
- Ning, N.; Yang, Z.; Han, J. Comparison of four extraction methods for alkaloids from Coptis chinensis. Hubei Agric. Sci. 2012, 51, 5452–5453+5456. [Google Scholar]
- Liu, B.; Li, W.; Chang, Y.; Dong, W.; Ni, L. Extraction of berberine from rhizome of Coptis chinensis Franch using supercritical fluid extraction. J. Pharm. Biomed. Anal. 2006, 41, 1056–1060. [Google Scholar] [CrossRef]
- Xia, K.; Hei, Z.; Li, S.; Song, H.; Huang, R.; Ji, X.; Zhang, F.; Shen, J.; Zhang, S.; Peng, S.; et al. Berberine inhibits intracellular Ca2+ signals in mouse pancreatic acinar cells through M3 muscarinic receptors: Novel target, mechanism, and implication. Biochem. Pharmacol. 2024, 225, 116279. [Google Scholar] [CrossRef]
- Wang, K.; Li, Z.; Zhang, W.; Liu, Y.; Wang, X.; Sun, M.; Fang, X.; Han, W. The study on synthesis and vitro hypolipidemic activity of novel berberine derivatives nitric oxide donors. Fitoterapia 2024, 176, 105964. [Google Scholar] [CrossRef]
- Zhang, H.J.; Fu, J.; Yu, H.; Xu, H.; Hu, J.C.; Lu, J.Y.; Bu, M.M.; Zhai, Z.; Wang, J.Y.; Ye, M.L.; et al. Berberine promotes the degradation of phenylacetic acid to prevent thrombosis by modulating gut microbiota. Phytomedicine 2024, 128, 155517. [Google Scholar] [CrossRef]
- Hao, Y.; Huo, J.; Wang, T.; Sun, G.; Wang, W. Chemical profiling of coptis rootlet and screening of its bioactive compounds in inhibiting Staphylococcus aureus by UPLC-Q-TOF/MS. J. Pharm. Biomed. Anal. 2020, 180, 113089. [Google Scholar] [CrossRef]
- Shishov, A.; El-Deen, A.K.; Godunov, P.; Bulatov, A. Atypical deep eutectic solvents: New opportunities for chemical analysis. TrAC Trends Anal. Chem. 2024, 176, 117752. [Google Scholar] [CrossRef]
- Pandey, A.; Bhawna, D.D.; Pandey, S. Hydrogen bond donor/acceptor cosolvent-modified choline chloride-based deep eutectic solvents. J. Phys. Chem. B 2017, 121, 4202–4212. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, C.R.; Matthews, R.P.; Welton, T.; Hunt, P.A. Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent. Phys. Chem. Chem. Phys. 2016, 18, 18145–18160. [Google Scholar] [CrossRef]
- Muhammad, G.; Xu, J.; Li, Z.; Zhao, L.; Zhang, X. Current progress and future perspective of microalgae biomass pretreatment using deep eutectic solvents. Sci. Total Environ. 2024, 924, 171547. [Google Scholar] [CrossRef]
- Osamede Airouyuwa, J.; Sivapragasam, N.; Ali Redha, A.; Maqsood, S. Sustainable green extraction of anthocyanins and carotenoids using deep eutectic solvents (DES): A review of recent developments. Food Chem. 2024, 448, 139061. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, K.; Wu, Q.; Jia, X.; Wang, H.; Yang, W.; Lin, L.; Hu, X.; Pan, B.; Li, P.; et al. The tomato WRKY-B transcription factor modulates lateral branching by targeting BLIND, PIN4 and IAA15. Hortic. Res. 2024, uhae193. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products. Talanta 2017, 168, 329–335. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef]
- Sang, J.; Li, B.; Huang, Y.; Ma, Q.; Liu, K.; Li, C. Deep eutectic solvent-based extraction coupled with green two-dimensional HPLC-DAD-ESI-MS/MS for the determination of anthocyanins from Lycium ruthenicum Murr. fruit. Anal. Methods 2018, 10, 1247–1257. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Int. J. Biol. Macromol. 2017, 95, 675–681. [Google Scholar] [CrossRef]
- Das, A.K.; Sharma, M.; Mondal, D.; Prasad, K. Deep eutectic solvents as efficientsolvent system for the extraction of kappa-carrageenan from Kappaphycus alvarezii. Carbohydr. Polym. 2016, 136, 930–935. [Google Scholar] [CrossRef]
- Tang, W.; Li, G.; Chen, B.; Zhu, T.; Row, K.H. Evaluating ternary deep eutectic solvents as novel media for extraction of flavonoids from Ginkgo biloba. Sep. Sci. Technol. 2017, 52, 91–99. [Google Scholar] [CrossRef]
- Li, D.; Dou, L.L.; Guo, L.; Li, P.; Liu, E.H. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain. Chem. Eng. 2016, 4, 2405–2411. [Google Scholar]
- Guo, L.; Wei, Y.; Wu, F.; Xin, Y. Research progress on the processing of Coptis chinensis with wine. Chin. Pharm. 2019, 30, 3164–3168. [Google Scholar]
- Meng, F.C.; Wu, Z.F.; Yin, Z.Q.; Lin, L.G.; Wang, R.; Zhang, Q.W. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin. Med. 2018, 13, 13. [Google Scholar] [CrossRef]
- Punzi, A.; Coppi, D.I.; Matera, S.; Capozzi, M.A.M.; Operamolla, A.; Ragni, R.; Babudri, F.; Farinola, G.M. Pd-Catalyzed Thiophene-Aryl Coupling Reaction via C-H Bond Activation in Deep Eutectic Solvents. Org. Lett. 2017, 19, 4754–4757. [Google Scholar] [CrossRef]
- Tommasi, E.; Cravotto, G.; Galletti, P.; Grillo, G.; Mazzotti, M.; Sacchetti, G.; Samorì, C.; Tabasso, S.; Tacchini, M.; Tagliavini, E. Enhanced and Selective Lipid Extraction from the Microalga P. tricornutum by Dimethyl Carbonate and Supercritical CO2 Using Deep Eutectic Solvents and Microwaves as Pretreatment. ACS Sustain. Chem. Eng. 2017, 5, 8316–8322. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboXyllitollic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Wang, N.; Wang, J.; Liao, Y.; Shao, S. Preparation of a nitro-substituted tris(indolyl)methane modified silica in deep eutectic solvents for solid-phase extraction of organic acids. Talanta 2016, 151, 1–7. [Google Scholar] [CrossRef]
- Ni, Y.; Xu, J.; Liu, H.; Shao, S. Fabrication of RGO-NiCo2O4 nanorods composite from deep eutectic solvents for nonenzymatic Aceperometric sensing of glucose. Talanta 2018, 185, 335–343. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.J.; Zhao, W.Y.; Xie, J.P. Studies on the extracting technology of flavones in Ginkgo leaves assisted by microwave. Adv. J. Food Sci. Technol. 2016, 10, 254–256. [Google Scholar]
- Noh, E.; Lee, K.G. Effects of ultrasound on the structural, physicochemical, and emulsifying properties of aquafaba extracted from various legumes. Food Chem. 2024, 451, 139438. [Google Scholar] [CrossRef]
- Gorke, J.; Srienc, F.; Kazlauskas, R. Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol. Bioprocess. Eng. 2010, 15, 40–53. [Google Scholar] [CrossRef]
- Jeong, K.M.; Ko, J.; Zhao, J.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Lee, J. Multi-functioning deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. J. Clean. Prod. 2017, 151, 87–95. [Google Scholar] [CrossRef]
Component | Linear Equation | r2 | Concentration Range/μg·mL−1 | Detection Limit/μg·mL−1 | Quantification Limit/μg·mL−1 |
---|---|---|---|---|---|
Berberine | Y = 44536 + 11.87 × X | 0.9992 | 5.0~100.0 | 1.0 × 10−2 | 5 × 10−3 |
Palmatine | Y = 65567 + 12.36 × X | 0.9997 | 5.0~100.0 | 1.0 × 10−2 | 5 × 10−3 |
Jatrorrhizine | Y = 42643 + 8.63 × X | 0.9996 | 5.0~100.0 | 1.0 × 10−2 | 5 × 10−3 |
Magnoflorine | Y = 61237 + 12.66 × X | 0.9997 | 5.0~100.0 | 1.0 × 10−2 | 5 × 10−3 |
Component | Original Concentration/μg·mL−1 | Concentration after Addition/μg·mL−1 | Monitoring Concentration/μg·mL−1 | Recovery Rate/% |
---|---|---|---|---|
Berberine | 50.00 | 75.00 | 78.43 | 113.72 |
Palmatine | 50.00 | 75.00 | 76.86 | 107.44 |
Jatrorrhizine | 50.00 | 75.00 | 75.63 | 102.52 |
Magnoflorine | 50.00 | 75.00 | 73.21 | 92.84 |
Component | DES-30% /μg·mL−1 | DES-50% /μg·mL−1 | DES-80% /μg·mL−1 | Ultrasonic Extraction/μg·mL−1 | Water Bath Reflux Extraction/μg·mL−1 |
---|---|---|---|---|---|
Berberine | 75.87 | 79.23 | 57.97 | 67.89 | 74.21 |
Palmatine | 12.44 | 15.63 | 10.87 | 7.86 | 12.57 |
Jatrorrhizine | 17.45 | 21.85 | 15.87 | 12.34 | 14.56 |
Magnoflorine | 20.68 | 26.79 | 16.87 | 11.34 | 18.64 |
Variables | Level | ||
---|---|---|---|
Power (W) | 80 | 150 | 200 |
Temperature (°C) | 40 | 50 | 60 |
Time (min) | 5 | 15 | 25 |
Compound Number (#) | Retention Time (min) | Name | CAS Number | Relative Content |
---|---|---|---|---|
1 | 14.186 | (+)-3-Carene | 498-15-7 | 0.0296% |
2 | 14.81 | Fenchyl acetate | 13851-11-1 | 0.0365% |
3 | 16.267 | D-Limonene | 5989-27-5 | 0.9304% |
4 | 16.413 | endo-Borneol | 507-70-0 | 0.2203% |
5 | 16.623 | gamma.-Terpinene | 99-85-4 | 0.1439% |
6 | 17.299 | 2-Carene | 554-61-0 | 5.8446% |
7 | 21.239 | alpha.-Cubebene | 17699-14-8 | 0.4279% |
8 | 21.431 | Eugenol | 97-53-0 | 0.0892% |
9 | 21.577 | 1,3-Diethyl-4-methylbenzene | 1758-85-6 | 0.0676% |
10 | 22.032 | Copaene | 3856-25-5 | 2.5769% |
11 | 22.253 | beta.-Bourbonene | 5208-59-3 | 0.0714% |
12 | 22.725 | Methyleugenol | 93-15-2 | 0.0301% |
13 | 23.407 | Caryophyllene | 87-44-5 | 44.6313% |
14 | 23.466 | Aromandendrene | 489-39-4 | 0.4429% |
15 | 24.177 | Humulene | 6753-98-6 | 10.4788% |
16 | 24.235 | Alloaromadendrene | 25246-27-9 | 0.1454% |
17 | 24.561 | gamma.-Muurolene | 30021-74-0 | 0.1399% |
18 | 25.721 | trans-Calamenene | 73209-42-4 | 0.7079% |
19 | 25.832 | alpha.-Guaiene | 3691/12/1 | 0.1815% |
20 | 25.972 | Cubenene | 29837-12-5 | 0.2501% |
21 | 26.193 | alpha.-Calacorene | 21391-99-1 | 0.0562% |
22 | 27.196 | Longifolene | 475-20-7 | 2.8377% |
23 | 27.277 | beta.-Guaiene | 88-84-6 | 0.1401% |
24 | 27.581 | cis-.alpha.-Bisabolene | 29837-07-8 | 0.1668% |
25 | 27.68 | beta.-Longipinene | 41432-70-6 | 0.2350% |
26 | 27.843 | alpha.-Farnesene | 502-61-4 | 0.2725% |
27 | 28.391 | Neoisolongifolene,8,9-dehydro | 67517-14-0 | 0.3519% |
28 | 28.566 | Germacrene D | 23986-74-5 | 0.2943% |
29 | 29.463 | aR-Himachalene | 19419-67-1 | 0.0692% |
30 | 44.542 | trans-Isoeugenol | 5932-68-3 | 0.6854% |
31 | 45.888 | Spiro[5.5]undec-8-en-1-one | 7353-75-5 | 0.0323% |
32 | 49.246 | Eugenol | 97-53-0 | 0.2447% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Gong, F.; Xiong, Z.; Wang, C.; Ran, X.; Ran, J.; Li, R.; Ou, Y.; Xia, Q.; Wei, P.; et al. An Extraction Process Based on the Collaborative Extraction of Coptis chinensis Franch. Phytoconstituents Using a Deep Eutectic Solvent and an Organic Solvent. Separations 2024, 11, 249. https://doi.org/10.3390/separations11080249
Liu C, Gong F, Xiong Z, Wang C, Ran X, Ran J, Li R, Ou Y, Xia Q, Wei P, et al. An Extraction Process Based on the Collaborative Extraction of Coptis chinensis Franch. Phytoconstituents Using a Deep Eutectic Solvent and an Organic Solvent. Separations. 2024; 11(8):249. https://doi.org/10.3390/separations11080249
Chicago/Turabian StyleLiu, Cheng, Fangyuan Gong, Zhengwei Xiong, Cun Wang, Xinhe Ran, Jiahua Ran, Runzi Li, Yangjin Ou, Qingqing Xia, Pei Wei, and et al. 2024. "An Extraction Process Based on the Collaborative Extraction of Coptis chinensis Franch. Phytoconstituents Using a Deep Eutectic Solvent and an Organic Solvent" Separations 11, no. 8: 249. https://doi.org/10.3390/separations11080249
APA StyleLiu, C., Gong, F., Xiong, Z., Wang, C., Ran, X., Ran, J., Li, R., Ou, Y., Xia, Q., Wei, P., & Guo, J. (2024). An Extraction Process Based on the Collaborative Extraction of Coptis chinensis Franch. Phytoconstituents Using a Deep Eutectic Solvent and an Organic Solvent. Separations, 11(8), 249. https://doi.org/10.3390/separations11080249