Novel Room Temperature Ionic Liquid for Liquid-Phase Microextraction of Cannabidiol from Natural Cosmetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instrumentation
2.3. Synthesis of Ionic Liquid
2.3.1. 1-Hydroxy-2-ethyl-imidazol-3-oxide (1)
2.3.2. 1-Butoxy-2-ethyl-imidazol-3-oxide (2)
2.3.3. 1-Butoxy-3-ethoxy-2-ethyl-imidazolium ethyl sulfate (3)
2.3.4. 1-Butoxy-3-ethoxy-2-ethyl-imidazolium bis(trifluoromethane)sulfonimide (4)
2.3.5. 1-Butoxy-3-methoxyimidazolium bis(trifluoromethane)sulfonimide
2.4. Liquid-Phase Microextraction Experiments
2.4.1. Screening Design for Categorical Parameters
2.4.2. Full Central Composite Design for Numerical Parameters
2.4.3. Optimized Liquid-Phase Microextraction Procedure
2.4.4. Method Validation
2.4.5. Real-World Samples
3. Results
3.1. Optimization
3.1.1. Screening Design for Categorical Parameters
3.1.2. Full Central Composite Design for Numerical Parameters
3.2. Method Validation
3.2.1. Selectivity
3.2.2. LOD, LOQ and Linearity
3.2.3. Recovery
3.2.4. Accuracy and Precision
3.2.5. Stability
3.3. Real-World Samples
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kellner, R.; Mermet, J.-M.; Otto, M.; Valcarcel, M.; Widmer, H.M. Analytical Chemistry: A Modern Approach to Analytical Science; Wiley-Vch: Weinheim, Germany, 2004. [Google Scholar]
- Mitra, S. Sample Preparation Techniques in Analytical Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 237. [Google Scholar]
- Pawliszyn, J. Sample preparation: Quo vadis? Anal. Chem. 2003, 75, 2543–2558. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lee, H.K. Liquid-phase microextraction in a single drop of organic solvent by using a conventional microsyringe. Anal. Chem. 1997, 69, 4634–4640. [Google Scholar] [CrossRef]
- Liu, H.; Dasgupta, P.K. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal. Chem. 1996, 68, 1817–1821. [Google Scholar] [CrossRef] [PubMed]
- Jeannot, M.A.; Cantwell, F.F. Solvent microextraction into a single drop. Anal. Chem. 1996, 68, 2236–2240. [Google Scholar] [CrossRef]
- Cruz-Vera, M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. One-step in-syringe ionic liquid-based dispersive liquid–liquid microextraction. J. Chromatogr. A 2009, 1216, 6459–6465. [Google Scholar] [CrossRef] [PubMed]
- Ravelo-Pérez, L.M.; Hernández-Borges, J.; Asensio-Ramos, M.; Rodríguez-Delgado, M.Á. Ionic liquid based dispersive liquid–liquid microextraction for the extraction of pesticides from bananas. J. Chromatogr. A 2009, 1216, 7336–7345. [Google Scholar] [CrossRef]
- Moradi, M.; Yamini, Y.; Baheri, T. Analysis of abuse drugs in urine using surfactant-assisted dispersive liquid–liquid microextraction. J. Sep. Sci. 2011, 34, 1722–1729. [Google Scholar] [CrossRef]
- Kang, M.; Sun, S.; Li, N.; Zhang, D.; Chen, M.; Zhang, H. Extraction and determination of hormones in cosmetics by homogeneous ionic liquid microextraction high-performance liquid chromatography. J. Sep. Sci. 2012, 35, 2032–2039. [Google Scholar] [CrossRef]
- Guo, J.; Wu, H.; Du, L.; Fu, Y. Determination of Brilliant Blue FCF in food and cosmetic samples by ionic liquid independent disperse liquid–liquid micro-extraction. Anal. Methods 2013, 5, 4021–4026. [Google Scholar] [CrossRef]
- Stanisz, E.; Werner, J.; Zgoła-Grześkowiak, A. Liquid-phase microextraction techniques based on ionic liquids for preconcentration and determination of metals. TrAC Trends Anal. Chem. 2014, 61, 54–66. [Google Scholar] [CrossRef]
- Chen, X. Analysis of methamphetamine in human urine using ionic liquid dispersive liquid-phase microextraction combined with HPLC. Chromatographia 2015, 78, 515–520. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Cheng, C.; Yang, Y. Magnetic solid-phase extraction and ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the determination of hexachlorophene in cosmetics. Chromatographia 2017, 80, 783–791. [Google Scholar] [CrossRef]
- Yang, M.; Gu, Y.; Wu, X.; Xi, X.; Yang, X.; Zhou, W.; Zeng, H.; Zhang, S.; Lu, R.; Gao, H. Rapid analysis of fungicides in tea infusions using ionic liquid immobilized fabric phase sorptive extraction with the assistance of surfactant fungicides analysis using IL-FPSE assisted with surfactant. Food Chem. 2018, 239, 797–805. [Google Scholar] [CrossRef]
- Mortimer, C.E.; Müller, U. Chemie: Das Basiswissen der Chemie; Georg Thieme Verlag: New York, NY, USA, 2015. [Google Scholar]
- Ohno, H. Electrochemical Aspects of Ionic Liquids; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- MacFarlane, D.R.; Seddon, K.R. Ionic liquids—progress on the fundamental issues. Aust. J. Chem. 2007, 60, 3–5. [Google Scholar] [CrossRef] [Green Version]
- De Los Rios, A.P.; Fernandez, F.J.H. Ionic Liquids in Separation Technology; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Harris, D.C. Lehrbuch der Quantitativen Analyse; Springer: Berlin, Germany, 2014. [Google Scholar]
- Millar, S.A.; Stone, N.L.; Yates, A.S.; O’Sullivan, S.E. A systematic review on the pharmacokinetics of cannabidiol in humans. Front. Pharmacol. 2018, 9, 1365. [Google Scholar] [CrossRef]
- Eagleston, L.R.; Kalani, N.K.; Patel, R.R.; Flaten, H.K.; Dunnick, C.A.; Dellavalle, R.P. Cannabinoids in dermatology: A scoping review. Dermatol. Online J. 2018, 24. Available online: https://escholarship.org/uc/item/7pn8c0sb (accessed on 24 August 2020).
- Cabaleiro, N.; De La Calle, I.; Bendicho, C.; Lavilla, I. Current trends in liquid–liquid and solid–liquid extraction for cosmetic analysis: A review. Anal. Methods 2013, 5, 323–340. [Google Scholar] [CrossRef]
- Laus, G.; Stadlwieser, J.; Klötzer, W. 1-Hydroxyimidazole derivatives III. 1, 2 Synthesis of 1-alkyloxy-, 1-arylalkyloxy-, and 1-phenoxy-1H-imidazoles. Synthesis 1989, 1989, 773–775. [Google Scholar] [CrossRef]
- Meischl, F.; Harder, M.; Kirchler, C.G.; Kremser, J.; Huck, C.W.; Bonn, G.K.; Rainer, M. Novel asymmetric 1, 3-di (alkyloxy) imidazolium based ionic liquids for liquid-phase microextraction of selected analgesics and estrogens from aqueous samples. J. Mol. Liq. 2019, 289, 111157. [Google Scholar] [CrossRef]
- Jochriem, M.; Kirchler, C.G.; Laus, G.; Wurst, K.; Kopacka, H.; Müller, T.; Schottenberger, H. Synthesis and crystal structures of non-symmetric 1, 3-di (alkyloxy) imidazolium salts. Z. Für Nat. B 2017, 72, 617–626. [Google Scholar] [CrossRef]
- Peters, F.; Hartung, M.; Herbold, M.; Schmitt, G.; Daldrup, T.; Mußhoff, F. Anforderungen an die Validierung von Analysenmethoden. Toxichem Krimtech 2009, 76, 185. [Google Scholar]
- Shabir, G.A. A practical approach to validation of HPLC methods under current good manufacturing practices. J. Valid. Technol. 2004, 10, 210–218. [Google Scholar]
- Shabir, G.A. Step-by-step analytical methods validation and protocol in the quality system compliance industry. J. Valid. Technol. 2005, 10, 314–325. [Google Scholar]
Parameter | Level −1.5 (−α) | Level −1 | Level 0 | Level +1 | Level +1.5 (+α) |
---|---|---|---|---|---|
amount of cream/mg | 12.5 | 15.0 | 20.0 | 25.0 | 27.5 |
volume of MeOH/mL | 0.25 | 0.5 | 1.0 | 1.5 | 1.75 |
volume of IL/µL | 5.0 | 10.0 | 20.0 | 30.0 | 35.0 |
extraction time/h | 0.25 | 0.5 | 1.0 | 1.5 | 1.75 |
Calibration Level/mg g−1 | Bias/% | RSD/% |
---|---|---|
0.6 | 1.8 | 1.1 |
1.5 | −2.4 | 1.3 |
3.0 | 0.5 | 1.7 |
4.5 | 0.9 | 0.9 |
6.0 | −0.5 | 1.3 |
Day 1 | Day 2 | Day 3 | Day 4 | Day 1–4 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Bias 1 | RSD 1 | Bias 1 | RSD 1 | Bias 1 | RSD 1 | Bias 1 | RSD 1 | Bias 1 | RSD 1 | |
QC1 (0.6 mg g−1) | 2.3 | 1.6 | −2.6 | 1.3 | −1.6 | 1.9 | 0.1 | 2.1 | 0.4 | 2.5 |
QC2 (4.5 mg g−1) | 1.5 | 2.4 | −0.8 | 2.2 | 1.0 | 1.7 | 1.6 | 1.9 | 0.8 | 2.2 |
Formulation | Product No. | Nominal Concentration of CBD | Measured Concentration of CBD (RSD) |
---|---|---|---|
oil-in-water emulsion | O1 | 6.0 mg mL−1 | 4.61 mg g−1 (1.4%) |
O2 | 0.3% | 1.44 mg g−1 (0.8%) | |
O3 | 1.25 mg mL−1 | 0.95 mg g−1 (1.6%) | |
O4 | unspecified | <LOQ | |
water-in-oil emulsion | W1 | 3.0 mg mL−1 | 1.81 mg g−1 (0.9%) |
W2 | unspecified | 0.87 mg g−1 (2.1%) | |
W3 | unspecified | n.d.1 | |
W4 | unspecified | n.d.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, S.; Harder, M.; Funck, K.; Erharter, K.; Popp, M.; Bonn, G.K.; Rainer, M. Novel Room Temperature Ionic Liquid for Liquid-Phase Microextraction of Cannabidiol from Natural Cosmetics. Separations 2020, 7, 45. https://doi.org/10.3390/separations7030045
Huber S, Harder M, Funck K, Erharter K, Popp M, Bonn GK, Rainer M. Novel Room Temperature Ionic Liquid for Liquid-Phase Microextraction of Cannabidiol from Natural Cosmetics. Separations. 2020; 7(3):45. https://doi.org/10.3390/separations7030045
Chicago/Turabian StyleHuber, Susanne, Matthias Harder, Kevin Funck, Kevin Erharter, Michael Popp, Günther K. Bonn, and Matthias Rainer. 2020. "Novel Room Temperature Ionic Liquid for Liquid-Phase Microextraction of Cannabidiol from Natural Cosmetics" Separations 7, no. 3: 45. https://doi.org/10.3390/separations7030045
APA StyleHuber, S., Harder, M., Funck, K., Erharter, K., Popp, M., Bonn, G. K., & Rainer, M. (2020). Novel Room Temperature Ionic Liquid for Liquid-Phase Microextraction of Cannabidiol from Natural Cosmetics. Separations, 7(3), 45. https://doi.org/10.3390/separations7030045