Determination of Thermostability Degree of Lycopene in Watermelon (Citrullus lanatus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Antioxidant Capacity by the ABTS Method
2.2. Determination of Antioxidant Activity by the NOS (Nitric Oxide Scavenging) Method
2.3. Determination of Antioxidant Activity by the FRAP (Ferric Reducing Antioxidant Potential) Method
2.4. Determination of Total Polyphenols Content
2.5. Determination of Lycopene Spectrophotometrically
2.6. Determination of Lycopene by the HPLC Method
2.7. Determination of Organic Acids by HPLC
2.8. Statistical Evaluation of Results
3. Results and Discussion
3.1. Lycopene Content
3.1.1. Lycopene Content Determined by HPLC
3.1.2. Lycopene Content Determined by Spectrophotometry
3.2. Antioxidant Capacity
3.2.1. Antioxidant Capacity Determined by the FRAP Method
3.2.2. Determination of Total Polyphenols Content
3.2.3. Antioxidant Capacity Determined by the NOS Method
3.2.4. Antioxidant Capacity Determined by the ABTS Method
3.3. Organic Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naz, A.; Sadiq Butt, M.; Pasha, I.; Nawaz, H. Antioxidant indices of watermelon juice and lycopene extract. Pak. J. Nutr. 2013, 12, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Andonova, L.; Georgieva, M.; Zlatkov, A. Free radicals, oxidative stres, and diseases associated with them. Pharmacia 2015, 62, 26–39. [Google Scholar]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Sindhi, V.; Gupta, V.; Sharma, K.; Bhatnagar, S.; Kumari, R.; Dhaka, N. Potential applications of antioxidants—A review. J. Pharm. Res. 2013, 7, 828–835. [Google Scholar] [CrossRef]
- Park, H.; Kim, Y.J.; Shin, Y. Estimation of daily intake of lycopene, antioxidant contents and activities from tomatoes, watermelons, and their processed products in Korea. Appl. Biol. Chem. 2020, 63, 50. [Google Scholar] [CrossRef]
- Choudhary, B.R.; Haldhar, S.M.; Maheshwari, S.K.; Bhargava, R.; Sharma, S.K. Phytochemicals and antioxidants in watermelon (Citrullus lanatus) genotypes under hot arid region. Indian J. Agric. Sci. 2015, 85, 414–421. [Google Scholar]
- Naz, A.; Butt, M.S.; Sultan, M.T.; Qayyum, M.M.N.; Niaz, R.S. Watermelon lycopene and allied health claims. Excli J. 2014, 13, 650–666. [Google Scholar]
- Xianquan, S.; Shi, J.; Kakuda, Y.; Yueming, J. Stability of lycopene during food processing and storage. J. Med. Food 2005, 8, 413–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagarajan, J.; Ramanan, R.N.; Raghunandan, M.E.; Galanakis, C.M.; Krishnamurthy, N.P. Chapter 8—Carotenoids. In Nutraceutical and Functional Food Components; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 259–296. ISBN 978-0-12-805257-0. [Google Scholar]
- Clinton, S.K.; Emenhiser, C.; Schwartz, S.J.; Bostwick, D.G.; Williams, A.W.; Moore, B.J.; Erdman, J.W.J. cis-trans lycopene isomers, carotenoids, and retinol in the human prostate. Cancer Epidemiol. Prev. Biomark. 1996, 5, 823–833. [Google Scholar]
- Evoli, L.; Lombardi-Boccia, G.; Lucarini, M. Influence of Heat Treatments on Carotenoid Content of Cherry Tomatoes. Foods 2013, 2, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Paulová, H.; Bochořákováa, H.; Táborská, E. Metody stanovení antioxidační aktivity přírodních látek in vitro. Chem. List. 2004, 98, 174–179. [Google Scholar]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Boora, F.; Chirisa, E.; Mukanganyama, S. Evaluation of Nitrite Radical Scavenging Properties of Selected Zimbabwean Plant Extracts and Their Phytoconstituents. J. Food Process. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tomadoni, B.; Cassani, L.; Ponce, A.; Moreira, M.R.; Agüero, M.V. Optimization of ultrasound, vanillin and pomegranate extract treatment for shelf-stable unpasteurized strawberry juice. Lwt-Food Sci. Technol. 2016, 72, 475–484. [Google Scholar] [CrossRef]
- Anthon, G.; Barrett, D.M. Standardization of a rapid spectrophotometric method for lycopene analysis. Acta Hortic. 2007, 758, 111–128. [Google Scholar] [CrossRef]
- Akagić, A.; Vranac, A.; Gaši, F.; Drkenda, P.; Spaho, N.; Oručević Žuljević, S.; Kurtović, M.; Musić, O.; Murtić, S.; Hudina, M. Sugars, acids and polyphenols profile of commercial and traditional apple cultivars for processing. Acta Agric. Slov. 2019, 113, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Nayik, G.A. Antioxidants in Fruits: Properties and Health Benefits; Springer Nature: London, UK, 2020; pp. 333–364. ISBN 9789811572845. [Google Scholar]
- Maoto, M.M.; Beswa, D.; Jideani, A.I.O. Watermelon as a potential fruit snack. Int. J. Food Prop. 2019, 22, 355–370. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.T.; Chen, B.H. Stability of lycopene during heating and illumination in a model system. Food Chem. 2002, 78, 425–432. [Google Scholar] [CrossRef]
- Edwards, A.J.; Vinyard, B.T.; Wiley, E.R.; Brown, E.D.; Collins, J.K.; Perkins-veazie, P.; Baker, R.A.; Clevidence, B.A. Human Nutrition and Metabolism of Lycopene and b-Carotene in Humans. J. Nutr. 2003, 133, 1043–1050. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Clevidence, B.; Wu, G. Watermelons and health. Acta Hortic. 2007, 731, 121–127. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Lycopene: A biologically important carotenoid for humans? Arch. Biochem. Biophys. 1996, 336, 1–9. [Google Scholar] [CrossRef]
- Mendelová, A.; Andrejiová, A.; Líšková, M.; Kozelová, D.; Mareček, J. Analysis of Carotenoids and Lycopene in Tomato (Lycopersicon Esculentum Mill.) and Their Retention in Tomato Juice. Potravinarstvo 2012, 6, 36–38. [Google Scholar] [CrossRef]
- Yetenayet, B.T.; Hosahalli, S.R. Temperature and high pressure stability of lycopene and vitamin C of watermelon Juice. Afr. J. Food Sci. 2015, 9, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Le Maguer, M.; Bryan, M.; Kakuda, Y. Kinetics of lycopene degradation in tomato puree by heat and light irradiation. J. Food Process Eng. 2003, 25, 485–498. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Davis, A.R.; Roberts, W. Carotenoid content of 50 watermelon cultivars. J. Agric. Food Chem. 2006, 54, 2593–2597. [Google Scholar] [CrossRef]
- Fish, W.W.; Davis, A.R. The effects of frozen storage conditions on lycopene stability in watermelon tissue. J. Agric. Food Chem. 2003, 51, 3582–3585. [Google Scholar] [CrossRef]
- Makroo, H.A.; Saxena, J.; Rastogi, N.K.; Srivastava, B. Ohmic heating assisted polyphenol oxidase inactivation of watermelon juice: Effects of the treatment on pH, lycopene, total phenolic content, and color of the juice. J. Food Process. Preserv. 2017, 41, 6. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martin-Belloso, O. Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem. 2009, 115, 1312–1319. [Google Scholar] [CrossRef]
- Kong, K.W.; Ismail, A.; Tan, C.P.; Rajab, N.F. Optimization of oven drying conditions for lycopene content and lipophilic antioxidant capacity in a by-product of the pink guava puree industry using response surface methodology. Lwt-Food Sci. Technol. 2010, 43, 729–735. [Google Scholar] [CrossRef]
- Kong, K.W.; Khoo, H.E.; Prasad, K.N.; Ismail, A.; Tan, C.P.; Rajab, N.F. Revealing the power of the natural red pigment lycopene. Molecules 2010, 15, 959–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Kaur, D.; Oberoi, D.P.S.; Sogi, D.S. Thermal degradation kinetics of pigments and visual color in watermelon juice. Int. J. Food Prop. 2008, 11, 439–449. [Google Scholar] [CrossRef]
- Rawson, A.; Tiwari, B.K.; Patras, A.; Brunton, N.; Brennan, C.; Cullen, P.J.; O’Donnell, C. Effect of thermosonication on bioactive compounds in watermelon juice. Food Res. Int. 2011, 44, 1168–1173. [Google Scholar] [CrossRef]
- Huang, D.J.; Ou, B.X.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef] [PubMed]
- Saikia, S.; Mahnot, N.K.; Mahanta, C.L. A comparative study on the effect of conventional thermal pasteurisation, microwave and ultrasound treatments on the antioxidant activity of five fruit juices. Food Sci. Technol. Int. 2016, 22, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Manivannan, A.; Lee, E.-S.; Han, K.; Lee, H.-E.; Kim, D.-S. Versatile Nutraceutical Potentials of Watermelon—A Modest Fruit Loaded with Pharmaceutically Valuable Phytochemicals. Molecules 2020, 25, 5258. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Kim, S.J.; Matsushita, Y.; Fukushima, K.; Aoki, D.; Yagami, S.; Yuk, H.G.; Lee, S.C. Antioxidant activity of a hydrothermal extract from watermelons. Lwt-Food Sci. Technol. 2014, 59, 361–368. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kim, S.Y.; Kim, D.R.; Jo, S.C.; Nam, K.C.; Ahn, D.U.; Lee, S.C. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J. Agric. Food Chem. 2004, 52, 3389–3393. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jeong, S.M.; Park, W.P.; Nam, K.C.; Ahn, D.U.; Lee, S.C. Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem. 2006, 97, 472–479. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.M.; Chun, J.; Lee, H.B.; Lee, J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 2006, 99, 381–387. [Google Scholar] [CrossRef]
- Muhammad Jawad, U.; Gao, L.; Gebremeskel, H.; Safdar, L.B.; Yuan, P.; Zhao, S.; Xuqiang, L.; Nan, H.; Hongju, Z.; Liu, W. Expression pattern of sugars and organic acids regulatory genes during watermelon fruit development. Sci. Hortic. (Amst.) 2020, 265, 109102. [Google Scholar] [CrossRef]
- Gölükcu, M.; Tokgöz, H. Variation in Sugar, Organic Acid and Volatile Flavor Compounds of Watermelon (Citrullus lanatus) Grafted on Different Rootstocks at Different Harvest Time. Akad. Gıda 2018, 16, 381–386. [Google Scholar]
Sample Number | Temperature (°C) | Exposition Duration (Min) |
---|---|---|
1 | - | - |
2 | 40 | 2 |
3 | 40 | 5 |
4 | 40 | 15 |
5 | 70 | 2 |
6 | 70 | 5 |
7 | 70 | 15 |
8 | 100 | 2 |
9 | 100 | 5 |
10 | 100 | 15 |
Sample | LYCOPENE HPLC (mg/kg) | LYCOPENE with Interference of β-Carotene Pigments (mg/kg) | LYCOPENE without Interference from Other Pigments (mg/kg) |
---|---|---|---|
1. Control Sample | 179.00 ± 0.64 a | 60.44 ± 0.15 a | 56.94 ± 4.37 a |
2. 40 °C, 2 min | 176.59 ± 2.72 ba | 62.42 ± 0.39 a | 61.42 ± 0.37 b |
3. 40 °C, 5 min | 123.91 ± 1.52 c | 66.84 ± 0.25 c | 65.45 ± 0.20 c |
4. 40 °C, 15 min | 155.12 ± 1.21 d | 55.61 ± 0.10 d | 54.64 ± 0.10 d |
5. 70 °C, 2 min | 88.72 ± 0.36 e | 44.94 ± 0.05 e | 44.21 ± 0.06 e |
6. 70 °C, 5 min | 151.63 ± 0.89 fd | 49.87 ± 0.02 f | 49.00 ± 0.03 f |
7. 70 °C, 15 min | 163.15 ± 0.51 gb | 43.31 ± 1.20 gdefi | 42.30 ± 0.10 gef |
8. 100 °C, 2 min | 152.07 ± 0.15 hd | 60.70 ± 0.04 a | 59.70 ± 0.05 hab |
9. 100 °C, 5 min | 129.90 ± 0.29 ic | 56.54 ± 0.06 i | 55.56 ± 0.07 i |
10. 100 °C, 15 min | 120.00 ± 0.11 jc | 44.04 ± 0.21 je | 43.01 ± 0.18 jef |
Sample | FRAP (µmol (Trolox)/g) | Polyphenols Content (Gallic Acid mg/g) | NOS (%) | ABTS (µmol (Trolox)/g |
---|---|---|---|---|
1. Control Sample | 0.41 ± 0.05 a | 0.47 ± 0.02 a | 13.06 ± 4.17 | 2.25 ± 0.04 a |
2. 40 °C, 2 min | 0.33 ± 0.08 ae | 1.14 ± 0.01 bc | 14.44 ± 0.47 ag | 2.36 ± 0.11 a |
3. 40 °C, 5 min | 0.37 ± 0.11 a | 1.12 ± 0.01 cb | 15.10 ± 0.21 ae | 2.52 ± 0.04 ac |
4. 40 °C, 15 min | 0.68 ± 0.13 b | 1.38 ± 0.01 d | 15.33 ± 0.26 a | 2.61 ± 0.10 ad |
5. 70 °C, 2 min | 0.30 ± 0.07 ae | 1.04 ± 0.01 e | 12.58 ± 0.24 | 2.72 ± 0.03 ae |
6. 70 °C, 5 min | 0.14 ± 0.03 ce | 0.90 ± 0.01 f | 14.26 ± 0.13 agj | 2.91 ± 0.08 fcde |
7. 70 °C, 15 min | 0.19 ± 0.08 ae | 0.54 ± 0.01 g | 11.76 ± 0.26 gb | 2.91 ± 0.15 gcde |
8. 100 °C, 2 min | 0.21 ± 0.01 ae | 0.99 ± 0.01 h | 9.30 ± 0.24 b | 3.34 ± 0.13 hfg |
9. 100 °C, 5 min | 0.16 ± 0.06 de | 0.87 ± 0.01 i | 7.69± 0.12 b | 3.41 ± 0.02 ihg |
10. 100 °C, 15 min | 0.38 ± 0.04 a | 1.17 ± 0.01 j | 10.62 ± 0.29 bj | 3.49 ± 0.11 jhi |
Sample | Oxalic Acid mg/kg | Malic Acid mg/kg | Citric Acid mg/kg |
---|---|---|---|
1. control sample | 4.89 ± 0.01 | 166.62 ± 20.91 | 85.80 ± 0.05 |
2. 40 °C, 2 min | 3.76 ± 0.01 a | 162.51 ± 0.46 a | 78.00 ± 0.06 a |
3. 40 °C, 5 min | 1.78 ± 0.01 b | 111.85 ± 0.30 b | 35.30 ± 0.22 b |
4. 40 °C, 15 min | 2.71 ± 0.01 c | 53.11 ± 0.11 c | 49.81 ± 0.31 c |
5. 70 °C, 2 min | 3.08 ± 0.08 dc | 128.39 ± 5.21 db | 68.16 ± 0.10 d |
6. 70 °C, 5 min | 2.21 ± 0.01 e | 130.95 ± 0.11 ed | 43.85 ± 0.01 e |
7. 70 °C, 15 min | 5.06 ± 0.01 f | 77.99 ± 0.12 f | 63.23 ± 0.60 f |
8. 100 °C, 2 min | 6.32 ± 0.01 g | 79.64 ± 0.01 g | 63.14 ± 0.01 gf |
9. 100 °C, 5 min | 5.39 ± 0.01 hg | 70.30 ± 0.01 hg | 58.71 ± 0.01 hg |
10. 100 °C, 15 min | 4.24 ± 0.01 ig | 57.08 ± 0.01 ig | 37.58 ± 0.01 ig |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremlova, B.; Mikulaskova, H.K.; Pencak, T.; Tesikova, K.; Dordevic, S.; Dordevic, D. Determination of Thermostability Degree of Lycopene in Watermelon (Citrullus lanatus). Separations 2021, 8, 220. https://doi.org/10.3390/separations8110220
Tremlova B, Mikulaskova HK, Pencak T, Tesikova K, Dordevic S, Dordevic D. Determination of Thermostability Degree of Lycopene in Watermelon (Citrullus lanatus). Separations. 2021; 8(11):220. https://doi.org/10.3390/separations8110220
Chicago/Turabian StyleTremlova, Bohuslava, Hana Koudelkova Mikulaskova, Tomas Pencak, Karolina Tesikova, Simona Dordevic, and Dani Dordevic. 2021. "Determination of Thermostability Degree of Lycopene in Watermelon (Citrullus lanatus)" Separations 8, no. 11: 220. https://doi.org/10.3390/separations8110220
APA StyleTremlova, B., Mikulaskova, H. K., Pencak, T., Tesikova, K., Dordevic, S., & Dordevic, D. (2021). Determination of Thermostability Degree of Lycopene in Watermelon (Citrullus lanatus). Separations, 8(11), 220. https://doi.org/10.3390/separations8110220