Gas Chromatography-Mass Spectrometry Analysis of Compounds Emitted by Pepper Yellow Leaf Curl Virus-Infected Chili Plants: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Polymerase Chain Reaction
2.3. Gas Chromatography-Mass Spectrometry
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, I.-K.; El-Aty, A.M.A.; Shin, H.-C.; Lee, H.B.; Shim, J.-H.; Kim, I.-S. Analysis of volatile compounds in fresh healthy and diseased peppers (Capsicum annuum L.) using solvent free solid injection coupled with gas chromatography-flame ionization detector and confirmation with mass spectrometry. J. Pharm. Biomed. Anal. 2007, 45, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.K.; Omer, A.; Teweldemedhin, B. Medicinal uses and health benefits of chili pepper (Capsicum spp.): A review. MOJ Food Process. Technol. 2018, 6, 1. [Google Scholar] [CrossRef]
- Suryani, R. Outlook Cabai Komoditas Pertanian Sub Sektor Hortikultura; Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian: Jakarta, Indonesia, 2019.
- De Barro, P.J.; Hidayat, S.H.; Frohlich, D.; Subandiyah, S.; Ueda, S. A virus and its vector, pepper yellow leaf curl virus and Bemisia tabaci, two new invaders of Indonesia. Biol. Invasions 2007, 10, 411–433. [Google Scholar] [CrossRef]
- Trisno, J.; Habazar, T.; Manti, I.; Jamsari, J.; Hidayat, S.H. Detection and Sequence Diversity of Begomovirus Associated with Yellow Leaf Curl Disease of Pepper (Capsicum annuum) in West Sumatra, Indonesia. Microbiol. Indones. 2009, 3, 56–61. [Google Scholar] [CrossRef]
- Luas Komulatif Serangan Opt Cabai 2018 & 2019. Direktorat Perlindungan Hortikultura. 2020. Available online: http://ditlin.hortikultura.pertanian.go.id/index.php/page/index/Luas-Komulatif-Serangan-OPT-Cabai-2018-2019 (accessed on 6 September 2020).
- Ganefianti, D.W.; Hidayat, S.H.; Syukur, M. Susceptible Phase of Chili Pepper Due to Yellow Leaf Curl Begomovirus Infection. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 594. [Google Scholar] [CrossRef]
- Windarningsih, M. Identification of virus causing the yellow leaf curl diseases on chili pepper in Lombok Island by PCR-RFLP technique. AIP Conf. Proc. 2019, 2199, 040010. [Google Scholar] [CrossRef]
- Rai, V.P.; Kumar, R.; Singh, S.P.; Kumar, S.; Kumar, S.; Singh, M.; Rai, M. Monogenic recessive resistance to Pepper leaf curl virus in an interspecific cross of Capsicum. Sci. Hortic. 2014, 172, 34–38. [Google Scholar] [CrossRef]
- Kesumawati, E.; Okabe, S.; Homma, K.; Fujiwara, I.; Zakaria, S.; Kanzaki, S.; Koeda, S. Pepper yellow leaf curl Aceh virus: A novel bipartite begomovirus isolated from chili pepper, tomato, and tobacco plants in Indonesia. Arch. Virol. 2019, 164, 2379–2383. [Google Scholar] [CrossRef]
- Sulandari, S.; Hidayat, S.H.; Suseno, R.; Harjosudarmo, J.; Sosromarsono, S. Transmission of Pepper Yellow Leaf Curl Virus by the Insect Vector Bemisia Tabaci Genn. (Hemiptera: Aleyrodidae). Int. Soc. Southeast Asian Agric. Sci. 2007, 13, 10–17. [Google Scholar]
- Selangga, D.G.W.; Hidayat, S.H.; Susila, A.D.; Wiyono, S. The Effect of Silica (SiO2) to the Severity of Yellow Leaf Curl Disease on Chili Pepper. J. Perlindungan Tanam. Indones. 2019, 23, 54–60. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, R.L.; et al. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Cevallos-Cevallos, J.M.; García-Torres, R.; Etxeberria, E.; Reyes-De-Corcuera, J.I. GC-MS Analysis of Headspace and Liquid Extracts for Metabolomic Differentiation of Citrus Huanglongbing and Zinc Deficiency in Leaves of ‘Valencia’ Sweet Orange from Commercial Groves. Phytochem. Anal. 2010, 22, 236–246. [Google Scholar] [CrossRef]
- Rubio, L.; Galipienso, L.; Ferriol, I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. Front. Plant Sci. 2020, 11, 1092. [Google Scholar] [CrossRef] [PubMed]
- Kumlachew, A. Detection of diseases, identification and diversity of viruses: A Review. J. Biol. Agric. Healthc. 2015, 5, 204–214. [Google Scholar]
- Li, Z.; Paul, R.; Tis, T.B.; Saville, A.C.; Hansel, J.C.; Yu, T.; Ristaino, J.; Wei, Q. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 2019, 5, 856–866. [Google Scholar] [CrossRef]
- Qiu, R.; Qu, D.; Hardy, G.E.S.J.; Trengove, R.; Agarwal, M.; Ren, Y. Headspace solid-phase microextraction and gas chromatography-mass spectrometry for analysis of VOCs produced by Phytophthora cinnamomi. Plant Dis. 2014, 98, 1099–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariharan, G.; Prasannath, K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front. Cell. Infect. Microbiol. 2021, 10, 1–14. [Google Scholar] [CrossRef]
- Blouin, A.G.; Greenwood, D.R.; Chavan, R.R.; Pearson, M.N.; Clover, G.R.; MacDiarmid, R.M.; Cohen, D. A generic method to identify plant viruses by high-resolution tandem mass spectrometry of their coat proteins. J. Virol. Methods 2010, 163, 49–56. [Google Scholar] [CrossRef]
- Jansen, R.M.C.; Wildt, J.; Kappers, I.F.; Bouwmeester, H.J.; Hofstee, J.W.; Van Henten, E.J. Detection of diseased plants by analysis of volatile organic compound emission. Annu. Rev. Phytopathol. 2011, 49, 157–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolì, F.; Negro, C.; Nutricati, E.; Vergine, M.; Aprile, A.; Sabella, E.; Damiano, G.; De Bellis, L.; Luvisi, A. Accumulation of Azelaic Acid in Xylella fastidiosa-Infected Olive Trees: A Mobile Metabolite for Health Screening. Phytopathology 2019, 109, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Picazo-Aragonés, J.; Terrab, A.; Balao, F. Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int. J. Mol. Sci. 2020, 21, 8956. [Google Scholar] [CrossRef]
- Sekine, T.; Appiah, K.S.; Azizi, M.; Fujii, Y. Plant Growth Inhibitory Activities and Volatile Active Compounds of 53 Spices and Herbs. Plants 2020, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, T.D.; Wiberley, A.E.; Donohue, A.R. Isoprene emission from plants: Why and how. Ann. Bot. 2008, 101, 5–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorokhov, Y.L.; Komarova, T.V.; Sheshukova, E. Volatile organic compounds and plant virus–host interaction. In Plant Virus–Host Interaction; Academic Press: Cambridge, MA, USA, 2014; pp. 241–262. [Google Scholar]
- Dudareva, N.; Negre, F.; Nagegowda, D.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Cape, J. Effects of airborne volatile organic compounds on plants. Environ. Pollut. 2003, 122, 145–157. [Google Scholar] [CrossRef]
- Tholl, D.; Hossain, O.; Weinhold, A.; Röse, U.S.R.; Wei, Q. Trends and applications in plant volatile sampling and analysis. Plant J. 2021, 106, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Seco, R.; Penuelas, J.; Filella, I. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos. Environ. 2007, 41, 2477–2499. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J. Discrimination of different types damage of rice plants by electronic nose. Biosyst. Eng. 2011, 109, 250–257. [Google Scholar] [CrossRef]
- Montejano-Ramírez, V.; García-Pineda, E.; Valencia-Cantero, E. Bacterial Compound N,N-Dimethylhexadecylamine Modulates Expression of Iron Deficiency and Defense Response Genes in Medicago truncatula Independently of the Jasmonic Acid Pathway. Plants 2020, 9, 624. [Google Scholar] [CrossRef]
- Simko, I.; Jimenez-Berni, J.A.; Sirault, X.R.R. Phenomic Approaches and Tools for Phytopathologists. Phytopathology 2017, 107, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Bos, L.D.J.; Sterk, P.J.; Schultz, M.J. Volatile Metabolites of Pathogens: A Systematic Review. PLoS Pathog. 2013, 9, e1003311. [Google Scholar] [CrossRef] [Green Version]
- Eid, K.; El-Sayed, A.-N.; Shoala, T. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Sugar Beet Leaf Extracts in Response to Exogenous Application of Resistance Inducers to Manage Sugar Beet Powdery Mildew. Egypt. J. Phytopathol. 2018, 46, 257–277. [Google Scholar] [CrossRef]
- De Lacy Costello,, B.P.J.; Evans, P.; Ewen, R.J.; Gunson, H.E.; Jones, P.R.H.; Ratcliffe, N.M.; Spencer-Phillips, P.T.N. Gas chromatography-mass spectrometry analyses of volatile organic compounds from potato tubers inoculated with Phytophthora infestans or Fusarium coeruleum. Plant Pathol. 2001, 50, 489–496. [Google Scholar] [CrossRef]
- Dai, T.; Chang, X.; Hu, Z.; Liang, L.; Sun, M.; Liu, P.; Liu, X. Untargeted Metabolomics Based on GC-MS and Chemometrics: A New Tool for the Early Diagnosis of Strawberry Anthracnose Caused by Colletotrichum theobromicola. Plant Dis. 2019, 103, 2541–2547. [Google Scholar] [CrossRef]
- Hu, Y.; Kong, W.; Yang, X.; Xie, L.; Wen, J.; Yang, M. GC-MS combined with chemometric techniques for the quality control and original discrimination of Curcumae longae rhizome: Analysis of essential oils. J. Sep. Sci. 2014, 37, 404–411. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, B.; Xin, Z.; Ren, D.; Yi, L. GC-MS Fingerprinting Combined with Chemometric Methods Reveals Key Bioactive Components in Acori Tatarinowii Rhizoma. Int. J. Mol. Sci. 2017, 18, 1342. [Google Scholar] [CrossRef]
- Kesumawati, E.; Okabe, S.; Khalil, M.; Alfan, G.; Bahagia, P.; Pohan, N.; Zakaria, S.; Koeda, S. Molecular Characterization of Begomoviruses Associated with Yellow Leaf Curl Disease in Solanaceae and Cucurbitaceae Crops from Northern Sumatra, Indonesia. Hortic. J. 2020, 89, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Mills, T.C. Presenting and Summarising Data. Anal. Econ. Data 2014, 6, 66–71. [Google Scholar] [CrossRef]
- Krzywinski, M.; Altman, N. Visualizing samples with box plots. Nat. Methods 2014, 11, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Marmolejo-Ramos, F.; Tian, T.S. The shifting boxplot. A boxplot based on essential summary statistics around the mean. Int. J. Psychol. Res. 2010, 3, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Shlens, J. A tutorial on principal component analysis. arXiv 2014, arXiv:1404.1100, preprint. [Google Scholar]
- Lajis, N.; Maulidiani, M.; Abas, F.; Ismail, I. Metabolomics Approach in Pharmacognosy. In Pharmacognosy: Fundamentals, Applications and Strategy; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Reaser, B.C.; Watson, N.E.; Prebihalo, S.E.; Pinkerton, D.K.; Skogerboe, K.J.; Synovec, R.E. Management and interpretation of capillary chromatography-mass spectrometry data. In Hyphenations of Capillary Chromatography with Mass Spectrometry; Elsevier BV: Amsterdam, The Netherlands, 2020; pp. 449–480. [Google Scholar]
- Pornprasertpol, A.; Sereemaspun, A.; Sooklert, K.; Satirapipatkul, C.; Sukrong, S. Anticancer activity of selected Colocasia gigantia fractions. J. Med. Assoc. Thail. 2015, 98, S98–S106. [Google Scholar]
- Aguirre, J.L.; Baena, J.; Martín, M.T.; González, S.; Manjón, J.L.; Peinado, M. Herbicidal effects of wood vinegar on nitrophilous plant communities. Food Energy Secur. 2020, 9, 1–18. [Google Scholar] [CrossRef]
- Kaur, R.; Malik, C.P. Cissus quadrangularis L.—Its botany, chemistry and medicinal importance: A review. Int. J. Pharm. Clin. Res. 2014, 6, 27–35. [Google Scholar]
- Bhattacharyya, R.; Medhi, K.K.; Borkataki, S. Phytochemical analysis of Drymaria cordata (L.) willd. ex schult. (whole plant) used by tea tribes of erstwhile Nagaon district of Assam, India. Int. J. Pharm. Sci. Res. 2019, 10, 4264–4269. [Google Scholar] [CrossRef]
- Al-Mussawi, Z.K.; Al-Hussani, I.M. Phytochemical study of Calendula officinalis plant by used GC-MS and FTIR techniques. Plant Arch. 2019, 19, 845–851. [Google Scholar]
- Sasikala, K.; Chandra Mohan, S. Total phenolic, Flavanoid contents and GC-MS analysis of canthium coromandelicum leaves extract. Int. J. Pharm. Pharm. Sci. 2014, 6, 379–381. [Google Scholar]
- Lee, K.-G.; Shibamoto, T. Antioxidant activities of volatile components isolated fromEucalyptus species. J. Sci. Food Agric. 2001, 81, 1573–1579. [Google Scholar] [CrossRef]
- Samarasinghe, D.K.; Virginia, W. Morphological, Genetic and Biochemical Characterization of The Anti-Malarial Herb, Artemisia Annua Germplasm Collection at West Virginia, Division of Plant and Soil Sciences; Davis College of Agriculture, Natural Resources and Design: Morgantown, WV, USA, 2018. [Google Scholar]
- Jadhav, V.; Kalase, V.; Patil, P. GC-MS analysis of bioactive compounds in methanolic extract of Holigarna grahamii (wight) Kurz. Int. J. Herb. Med. 2014, 35, 35–39. [Google Scholar]
- Ōnishi, I.; Tomita, H.; Fukuzumi, T. Studies on the essential oils of tobacco leaves: Part XV. The neutral fraction. J. Agric. Chem. Soc. Jpn. 2014, 21, 239–242. [Google Scholar] [CrossRef]
- Semeniuc, C.A.; Socaciu, M.-I.; Socaci, S.A.; Mureșan, V.; Nagy, M.; Rotar, A.M. Chemometric Comparison and Classification of Some Essential Oils Extracted from Plants Belonging to Apiaceae and Lamiaceae Families Based on Their Chemical Composition and Biological Activities. Molecules 2018, 23, 2261. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, N.; Whitworth, M.B.; Cui, C.; Fisk, I.D. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Zhang, B.; Chen, Y.; Yu, Z.; Chen, H.; Ni, D. Impact of light irradiation on black tea quality during withering. J. Food Sci. Technol. 2017, 54, 1212–1227. [Google Scholar] [CrossRef]
- Cai, L.; Koziel, J.A.; O’Neal, M.E. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae). Chromatography 2015, 2, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Widyawati, P.S.; Wijaya, C.H.; Hardjosworo, P.S.; Sajuthi, D. Volatile Compounds of Pluchea indica Less and Ocimum basillicum Linn Essential Oiland Potency as Antioxidant. Hayati J. Biosci. 2013, 20, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Ko, A.-Y.; Rahman, M.; El-Aty, A.A.; Jang, J.; Choi, J.-H.; Mamun, M.; Shim, J.-H. Identification of volatile organic compounds generated from healthy and infected powdered chili using solvent-free solid injection coupled with GC/MS: Application to adulteration. Food Chem. 2014, 156, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Banaras, S.; Javaid, A.; Shoaib, A.; Ahmed, E. Antifungal activity of cirsium arvense extracts against phytopathogenic fungus macrophomina phaseolina. Planta Daninha 2017, 35, e017162738. [Google Scholar] [CrossRef] [Green Version]
- Al-wassouf, G. Chemical composition of the essential oil of Lavandula angustifolia from Syria. Chem. Mater. Res. 2018, 10, 1. [Google Scholar]
- Chenniappan, J.; Sankaranarayanan, A.; Arjunan, S. Evaluation of Antimicrobial Activity of Cissus quadrangularis L. stem extracts against Avian Pathogens and Determination of its Bioactive Constituents using GC-MS. J. Sci. Res. 2020, 64, 90–96. [Google Scholar] [CrossRef]
- Madi, Y.F.; Choucry, M.A.; Meselhy, M.R.; El-Kashoury, E.S.A. Essential oil of Cymbopogon citratus cultivated in Egypt: Seasonal variation in chemical composition and anticholinesterase activity. Nat. Prod. Res. 2020, 1–7. [Google Scholar] [CrossRef]
- Dong, S.; Bi, H.; Zheng, D.; Li, Y.; Zhao, Y.; Peng, W. Bioactive constituents and biodrugs from Euphorbia tirucalli stene. J. Environ. Biol. 2019, 40, 524–535. [Google Scholar] [CrossRef]
- Odion, E.E.; Ogboru, R.O.; Ighene, M.O. Identification of Compounds in Elaeis guineensis Fruits using GC-MS. Dhaka Univ. J. Pharm. Sci. 2020, 19, 153–159. [Google Scholar] [CrossRef]
- Khan, M.; Khan, M.; Abdullah, M.M.; Al-Wahaibi, L.H.; Alkhathlan, H.Z. Characterization of secondary metabolites of leaf and stem essential oils of Achillea fragrantissima from central region of Saudi Arabia. Arab. J. Chem. 2020, 13, 5254–5261. [Google Scholar] [CrossRef]
- Rahman, J.; Tareq, A.; Hossain, M.; Sakib, S.; Islam, M.; Ali, H.; Uddin, A.; Hoque, M.; Nasrin, M.; Emran, T.; et al. Biological Evaluation, DFT Calculations and Molecular Docking Studies on the Antidepressant and Cytotoxicity Activities of Cycas pectinata Buch. -Ham. Compounds. Pharmaceuticals 2020, 13, 232. [Google Scholar] [CrossRef]
- Sheibani, E.; Duncan, S.E.; Kuhn, D.; Dietrich, A.; Newkirk, J.J.; O’Keefe, S.F. Changes in flavor volatile composition of oolong tea after panning during tea processing. Food Sci. Nutr. 2016, 4, 456–468. [Google Scholar] [CrossRef]
- Jayakumar, M.; Ramachandran, M.; Krishnaveni, T.; Nattudurai, G. Toxicity and biochemical effects of essential oils of Anethum graveolens L. and Melaleuca cajuputi Powell against Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). Int. J. Trop. Insect Sci. 2021, 41, 945–951. [Google Scholar] [CrossRef]
- Hariharan, A.; Hussain, M.I.M.; Kumpati, P.K.; Tajuddin, N.B.; Mathew, S.; Qadri, I. Chemical composition of the hexane extract of leaves of Azima tetracantha (LAM). Asian J. Plant Sci. Res. 2015, 5, 1–5. [Google Scholar]
- Teamkao, P.; Thiravetyan, P. Phytoremediation of Mono-, Di-, and Triethylene Glycol by Echinodorus cordifolius L. Griseb. Int. J. Phytoremediat. 2014, 17, 93–100. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, S.; Peng, L.; Liu, X.; Kaushal, R.; Yuan, F.; Singh, S.K.; He, D.; Lv, S.; Vílchez, J.I.; et al. Latent defense response to non-pathogenic microbial factors impairs plant-rhizobacteria mutualism. bioRxiv 2020. [Google Scholar] [CrossRef]
- Palariya, D.; Singh, A.; Dhami, A.; Kumar, R.; Pant, A.K.; Prakash, O. Phytochemical analysis and screening of antioxidant, antibacterial and anti- inflammatory activity of essential oil of Premna mucronata Roxb. Leaves. Trends Phytochem. Res. 2019, 3, 275–286. [Google Scholar]
- Hussein, H.J.; Mohammed, Y.H.; Imad, H.H. Study of chemical composition of Foeniculum vulgare using Fourier transform infrared spectrophotometer and gas chromatography—Mass spectrometry. J. Pharmacogn. Phytother. 2016, 8, 60–89. [Google Scholar] [CrossRef] [Green Version]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef]
- Bai, S.; Seasotiya, L.; Malik, A.; Bharti, P.; Dalal, S. GC-MS analysis of chloroform extract of Acacia nilotica L. Leaves. J. Pharmacogn. Phytochem. 2014, 2, 79–82. [Google Scholar]
- Al-Bahadily, D.; Shari, F.; Najm, M.; Al-Salman, H. Antimicrobial Activity of the Compound 2-Piperidinone, N-[4-Bromo-n-butyl]-Extracted from Pomegranate Peels. Asian J. Pharm. 2019, 13, 46–53. [Google Scholar] [CrossRef]
- Ghosh, S.; Derle, A.; Ahire, M.; More, P.; Jagtap, S.; Phadatare, S.D.; Patil, A.B.; Jabgunde, A.M.; Sharma, G.K.; Shinde, V.S.; et al. Phytochemical Analysis and Free Radical Scavenging Activity of Medicinal Plants Gnidia glauca and Dioscorea bulbifera. PLoS ONE 2013, 8, e82529. [Google Scholar] [CrossRef] [Green Version]
- YangLi, Y.; Chen, X.; Ashraf, M.A.; Liu, Z.; Bi, H.; Zheng, D.; Zhao, Y.; Peng, W. Molecules and functions of Aesculus chinensis Bunge Bark volatiles. Emir. J. Food Agric. 2018, 30, 809–819. [Google Scholar]
- Kurian, S.; Joseph, L.; Josekumar, V.S. Phytochemical evaluation, GC-MS analysis and antimicrobial activity of the leaves petiole of Artocarpus heterophyllus Lam. Asian J. Pharm. Pharmacol. 2018, 4, 280–287. [Google Scholar] [CrossRef]
- Giacomuzzi, V.; Cappellin, L.; Nones, S.; Khomenko, I.; Biasioli, F.; Knight, A.L.; Angeli, S. Diel rhythms in the volatile emission of apple and grape foliage. Phytochemistry 2017, 138, 104–115. [Google Scholar] [CrossRef]
- Bouchereau, A.; Gueno, P.; Larher, F. Review: Analysis of amines in plant materials Alain. J. Chromatogr. B 2000, 747, 49–67. [Google Scholar] [CrossRef]
- Maduka, T.O.; Chiyere, I.; Georgina, K. Physicochemical Characterization and Assessment of Bioactive Chemical Compounds of Persea Americana (Avocado) Seed. J. Nat. Ayurvedic Med. 2020, 4, 1–11. [Google Scholar] [CrossRef]
- Lakshmi, C.N.D.M.; Prabhakara, J.P.R.; Saritha, K.; Raju, B.D.P.; Sushma, N.J. Phytoconstituents Profile of Clitoria Ternatea by Gc-Ms and Its Age-Related Anticholinergic Activity Against Aluminum and Restraint Stress. Int. Res. J. Pharm. 2018, 9, 38–44. [Google Scholar] [CrossRef]
- Hayat, M.M.; Uzair, M. Biological potential and GC-MS analysis of phytochemicals of Farsetia hamiltonii (Royle). Biomed. Res. 2019, 30, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Javaid, A.; Shoaib, A. Gc-Ms Analysis and Antifungal Activity of Methanolic Root Extract of Chenopodium album against Sclerotium rolfsii. Planta Daninha 2017, 35. [Google Scholar] [CrossRef] [Green Version]
Compounds | Formula | %Area | ||||
---|---|---|---|---|---|---|
IPJ | IPS | ICS | UPJ | UPS | ||
Amine | ||||||
(2-Aziridinylethyl)amine [47] | C4H10N2 | 54.74 | 30.07 | 6.64 | - | - |
Acid | ||||||
Acetic acid [48] | C2H4O2 | - | 12.37 | 21.69 | 6.05 | 1.27 |
Butanedioic acid, 2,3-bis(acetyloxy)-, [R-(R*,R*)]- [49] | C8H10O8 | - | - | - | - | 2.79 |
Cyclohexan-1,4,5-triol-3-one-1-carboxylic acid [50] | C7H10O6 | - | - | - | - | 1.96 |
Hydroxyacetic acid, hydrazide [51] | C2H6N2O2 | - | - | - | 3.15 | - |
Alcohol | ||||||
12-Methyl-E,E-2,13-octadecadien-1-ol [52] | C19H36O | - | - | - | 0.27 | - |
5-Hexen-2-ol [53] | C6H12O | - | - | - | 6.57 | - |
Cyclohexanol, 1-methyl-4-(1-methylethenyl)-, cis- [54] | C10H18O | - | - | - | - | 0.10 |
Glycidol [55] | C3H6O2 | - | 3.29 | 0.18 | - | - |
Methyl alcohol [56] | CH4O | - | - | - | 6.26 | - |
Phenol, 2-ethyl-4,5-dimethyl- [57] | C10H14O | - | - | - | 0.13 | - |
Aldehyde | ||||||
1H-Pyrrole-2-carboxaldehyde [58] | C5H5NO | - | - | 0.24 | - | - |
Benzaldehyde, 3-benzyloxy-2-fluoro-4-methoxy- [59] | C15H13FO3 | - | - | - | 0.42 | - |
Butanal, 2-methyl- [60] | C5H10O | 0.43 | - | - | - | 3.75 |
Butanal, 3-methyl- [61] | C5H10O | 1.14 | - | - | - | 2.40 |
Propanal, 2-methyl- [62] | C4H8O | 0.50 | - | - | - | 3.97 |
Ester | ||||||
10-Octadecenoic acid, methyl ester [63] | C19H36O2 | - | - | - | 2.41 | - |
Butanoic acid, 3,7-dimethyl-2,6-octadienyl ester, (E)- [64] | C14H24O2 | 0.16 | - | - | - | - |
Cyclopentaneundecanoic acid, methyl ester [65] | C17H32O2 | - | - | - | 0.44 | - |
E-2-Octenyl tiglate [66] | C13H22O2 | - | - | - | 0.53 | - |
Formic acid, chloro-, (3,4,4-trimethyl-1,2-dioxetan-3-yl)methyl ester [67] | - | - | - | - | 6.46 | |
Heptadecanoic acid, 10-methyl-, methyl ester [68] | C19H38O2 | - | - | - | 0.48 | - |
Isobutyl tiglate [69] | C9H16O2 | - | - | - | 0.13 | - |
Tetradecanoic acid, 12-methyl-, methyl ester, (S)- [70] | C16H32O2 | - | - | - | 0.47 | - |
Hydrocarbon | ||||||
1H-Indene, 2,3-dihydro-1,1,5,6-tetramethyl- [71] | C13H18 | - | - | - | 0.06 | - |
2-Methylbicyclo[4.3.0]non-1(6)-ene [72] | C10H16 | - | - | 0.09 | - | - |
Benzene, 2-(1,3-butadienyl)-1,3,5-trimethyl- [73] | C13H16 | - | - | - | 0.11 | - |
Ketone | ||||||
2-Propanone, 1-hydroxy- [74] | C3H6O2 | - | 0.81 | - | - | 0.46 |
2,3-Butanedione [75] | C4H6O2 | - | - | - | - | 7.79 |
2H-Inden-2-one, 1,4,5,6,7,7a-hexahydro-7a-methyl-, (S)- [76] | C10H14O | - | - | 0.10 | - | - |
6-Methylenebicyclo[3.2.0]hept-3-en-2-one [77] | C8H8O | - | - | - | - | 0.04 |
Furaneol [78] | C6H8O3 | - | - | 0.87 | - | - |
Megastigmatrienone [79] | C13H18O | - | - | - | 0.13 | - |
Maltol [78] | C6H6O3 | - | - | 0.56 | - | - |
2-Piperidinone, N-[4-bromo-n-butyl]- [80] | C9H16BrNO | - | - | - | 0.30 | - |
2-Pyrrolidinone, 1-methyl- [81] | C5H9NO | - | - | 2.71 | - | - |
Nitrogenous compounds | ||||||
Acetamide, N-(aminoiminomethyl)- [82] | C3H7N3O | - | - | - | 14.28 | - |
o-Aminobenzohydroxamic acid [83] | C7H8N2O2 | 0.05 | - | - | - | - |
Sulfur Compound | ||||||
Dimethyl sulfide [84] | C2H6S | 1.56 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agustika, D.K.; Mercuriani, I.S.; Ariyanti, N.A.; Purnomo, C.W.; Triyana, K.; Iliescu, D.D.; Leeson, M.S. Gas Chromatography-Mass Spectrometry Analysis of Compounds Emitted by Pepper Yellow Leaf Curl Virus-Infected Chili Plants: A Preliminary Study. Separations 2021, 8, 136. https://doi.org/10.3390/separations8090136
Agustika DK, Mercuriani IS, Ariyanti NA, Purnomo CW, Triyana K, Iliescu DD, Leeson MS. Gas Chromatography-Mass Spectrometry Analysis of Compounds Emitted by Pepper Yellow Leaf Curl Virus-Infected Chili Plants: A Preliminary Study. Separations. 2021; 8(9):136. https://doi.org/10.3390/separations8090136
Chicago/Turabian StyleAgustika, Dyah K., Ixora S. Mercuriani, Nur Aeni Ariyanti, Chandra W. Purnomo, Kuwat Triyana, Daciana D. Iliescu, and Mark S. Leeson. 2021. "Gas Chromatography-Mass Spectrometry Analysis of Compounds Emitted by Pepper Yellow Leaf Curl Virus-Infected Chili Plants: A Preliminary Study" Separations 8, no. 9: 136. https://doi.org/10.3390/separations8090136
APA StyleAgustika, D. K., Mercuriani, I. S., Ariyanti, N. A., Purnomo, C. W., Triyana, K., Iliescu, D. D., & Leeson, M. S. (2021). Gas Chromatography-Mass Spectrometry Analysis of Compounds Emitted by Pepper Yellow Leaf Curl Virus-Infected Chili Plants: A Preliminary Study. Separations, 8(9), 136. https://doi.org/10.3390/separations8090136