Method Development and Applications for Reduced-Risk Products
1. Introduction
2. Summary of Published Articles
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- US Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; Centers for Disease Control and Prevention (US): Atlanta, GA, USA, 2014.
- Rodgman, A.; Perfetti, T.A. The Chemical Components of Tobacco and Tobacco Smoke; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- FDA. Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke: Established List; Office of the Federal Register: Washington, DC, USA, 2012. [Google Scholar]
- Gottlieb, S.; Zeller, M. A Nicotine-Focused Framework for Public Health. N. Engl. J. Med. 2017, 377, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Hatsukami, D.K.; Joseph, A.M.; Lesage, M.; Jensen, J.; Murphy, S.E.; Pentel, P.R.; Kotlyar, M.; Borgida, E.; Le, C.; Hecht, S.S. Developing the science base for reducing tobacco harm. Nicotine Tob. Res. 2007, 9, 537–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeller, M.; Hatsukami, D. The Strategic Dialogue on Tobacco Harm Reduction: A vision and blueprint for action in the US. Tob. Control 2009, 18, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.A.; Flora, J.W.; Melvin, M.S.; Avery, K.C.; Ballentine, R.M.; Brown, A.P.; McKinney, W.J. An evaluation of electronic cigarette formulations and aerosols for harmful and potentially harmful constituents (HPHCs) typically derived from combustion. Regul. Toxicol. Pharmacol. 2018, 95, 153–160. [Google Scholar] [CrossRef]
- Jaccard, G.; Djoko, D.T.; Moennikes, O.; Jeannet, C.; Kondylis, A.; Belushkin, M. Comparative assessment of HPHC yields in the Tobacco Heating System THS2.2 and commercial cigarettes. Regul. Toxicol. Pharmacol. 2017, 90, 1–8. [Google Scholar] [CrossRef]
- Danielson, T.M.; Brown, A.P.; Jin, X.; Wilkinson, C.T.; Pithawalla, Y.; McKinney, W.J. Evaluation of Novel, Oral Tobacco-Derived Nicotine Products for HPHCs. In Proceedings of the 72nd Tobacco Science Research Conference, Memphis, TN, USA, 16–19 September 2018. [Google Scholar]
- Haziza, C.; De La Bourdonnaye, G.; Donelli, A.; Poux, V.; Skiada, D.; Weitkunat, R.; Baker, G.; Picavet, P.; Lüdicke, F. Reduction in Exposure to Selected Harmful and Potentially Harmful Constituents Approaching Those Observed Upon Smoking Abstinence in Smokers Switching to the Menthol Tobacco Heating System 2.2 for 3 Months (Part 1). Nicotine Tob. Res. 2019, 22, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.; Kapur, S.; Frost-Pineda, K.; Feng, S.; Wang, J.; Liang, Q.; Roethig, H. Evaluation of biomarkers of exposure to selected cigarette smoke constituents in adult smokers switched to carbon-filtered cigarettes in short-term and long-term clinical studies. Nicotine Tob. Res. 2008, 10, 1761–1772. [Google Scholar] [CrossRef]
- Lüdicke, F.; Ansari, S.M.; Lama, N.; Blanc, N.; Bosilkovska, M.; Donelli, A.; Picavet, P.; Baker, G.; Haziza, C.; Peitsch, M.; et al. Effects of Switching to a Heat-Not-Burn Tobacco Product on Biologically Relevant Biomarkers to Assess a Candidate Modified Risk Tobacco Product: A Randomized Trial. Cancer Epidemiol. Prev. Biomark. 2019, 28, 1934–1943. [Google Scholar] [CrossRef] [Green Version]
- Polosa, R.; Farsalinos, K.; Prisco, D. Health impact of electronic cigarettes and heated tobacco systems. Intern. Emerg. Med. 2019, 14, 817–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajek, P. Electronic cigarettes have a potential for huge public health benefit. BMC Med. 2014, 12, 225. [Google Scholar] [CrossRef] [Green Version]
- Balfour, D.J.K.; Benowitz, N.L.; Colby, S.M.; Hatsukami, D.K.; Lando, H.A.; Leischow, S.J.; Lerman, C.; Mermelstein, R.J.; Niaura, R.; Perkins, K.A.; et al. Balancing Consideration of the Risks and Benefits of E-Cigarettes. Am. J. Public Health 2021, 111, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, Smokeless Tobacco Products, including Dip, Snuff, Snus, and Chewing Tobacco. Available online: https://www.fda.gov/tobacco-products/products-ingredients-components/smokeless-tobacco-products-including-dip-snuff-snus-and-chewing-tobacco (accessed on 14 March 2022).
- Choi, J.H.; Dresler, C.M.; Norton, M.R.; Strahs, K.R. Pharmacokinetics of a nicotine polacrilex lozenge. Nicotine Tob. Res. 2003, 5, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Robichaud, M.O.; Seidenberg, A.B.; Byron, M.J. Tobacco companies introduce ‘tobacco-free’ nicotine pouches. Tob. Control 2019, 29, e145–e146. [Google Scholar] [CrossRef]
- Tayyarah, R.; Long, G.A. Comparison of select analytes in aerosol from e-cigarettes with smoke from conventional cigarettes and with ambient air. Regul. Toxicol. Pharmacol. 2014, 70, 704–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillman, I.; Kistler, K.; Stewart, E.; Paolantonio, A. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols. Regul. Toxicol. Pharmacol. 2016, 75, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Aldeek, F.; McCutcheon, N.; Smith, C.; Miller, J.H.; Danielson, T.L. Dissolution Testing of Nicotine Release from OTDN Pouches: Product Characterization and Product-to-Product Comparison. Separations 2021, 8, 7. [Google Scholar] [CrossRef]
- Miller, J.H.; Danielson, T.; Pithawalla, Y.B.; Brown, A.P.; Wilkinson, C.; Wagner, K.; Aldeek, F. Method development and validation of dissolution testing for nicotine release from smokeless tobacco products using flow-through cell apparatus and UPLC-PDA. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1141, 122012. [Google Scholar] [CrossRef]
- Knopp, M.M.; Kiil-Nielsen, N.K.; Masser, A.E.; Staaf, M. Introducing a Novel Biorelevant In Vitro Dissolution Method for the Assessment of Nicotine Release from Oral Tobacco-Derived Nicotine (OTDN) and Snus Products. Separations 2022, 9, 52. [Google Scholar] [CrossRef]
- A Study Investigating the Extraction of Nicotine and Flavors from Tobacco Free Nicotine Pods Compared to Tobacco Based Swedish Snus. Available online: https://www.isrctn.com/ISRCTN44913332?q=&filters=conditionCategory:Not%20Applicable&page=1&pageSize=10 (accessed on 14 March 2022).
- Avagyan, R.; Spasova, M.; Lindholm, J. Determination of Nicotine-Related Impurities in Nicotine Pouches and Tobacco-Containing Products by Liquid Chromatography–Tandem Mass Spectrometry. Separations 2021, 8, 77. [Google Scholar] [CrossRef]
- Jablonski, J.J.; Cheetham, A.G.; Martin, A.M. Market Survey of Modern Oral Nicotine Products: Determination of Select HPHCs and Comparison to Traditional Smokeless Tobacco Products. Separations 2022, 9, 65. [Google Scholar] [CrossRef]
- Ward, A.M.; Yaman, R.; Ebbert, J.O. Electronic nicotine delivery system design and aerosol toxicants: A systematic review. PLoS ONE 2020, 15, e0234189. [Google Scholar] [CrossRef]
- Jin, X.C.; Ballentine, R.M.; Gardner, W.P.; Melvin, M.S.; Pithawalla, Y.B.; Wagner, K.A.; Avery, K.C.; Sharifi, M. Determination of Formaldehyde Yields in E-Cigarette Aerosols: An Evaluation of the Efficiency of the DNPH Derivatization Method. Separations 2021, 8, 151. [Google Scholar] [CrossRef]
- Salamanca, J.C.; Munhenzva, I.; Escobedo, J.O.; Jensen, R.P.; Shaw, A.; Campbell, R.; Luo, W.; Peyton, D.H.; Strongin, R.M. Formaldehyde Hemiacetal Sampling, Recovery, and Quantification from Electronic Cigarette Aerosols. Sci. Rep. 2017, 7, 11044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Bailey, P.C.; Yang, C.; Hiraki, B.; Oldham, M.J.; Gillman, I.G. Targeted Characterization of the Chemical Composition of JUUL Systems Aerosol and Comparison with 3R4F Reference Cigarettes and IQOS Heat Sticks. Separations 2021, 8, 168. [Google Scholar] [CrossRef]
- Crosswhite, M.R.; Bailey, P.C.; Jeong, L.N.; Lioubomirov, A.; Yang, C.; Ozvald, A.; Jameson, J.B.; Gillman, I.G. Non-Targeted Chemical Characterization of JUUL Virginia Tobacco Flavored Aerosols Using Liquid and Gas Chromatography. Separations 2021, 8, 130. [Google Scholar] [CrossRef]
- Green, C.R.; Rodgman, A. The Tobacco Chemists’ Research Conference: A half century forum for advances in analytical methodology of tobacco and its products. Recent Adv. Tob. Sci. 1996, 22, 131–304. [Google Scholar]
- Burkhardt, T.; Pluym, N.; Scherer, G.; Scherer, M. 1,2-Propylene Glycol: A Biomarker of Exposure Specific to e-Cigarette Consumption. Separations 2021, 8, 180. [Google Scholar] [CrossRef]
- Piller, M.; Gilch, G.; Scherer, G.; Scherer, M. Simple, fast and sensitive LC–MS/MS analysis for the simultaneous quantification of nicotine and 10 of its major metabolites. J. Chromatogr. B 2014, 951–952, 7–15. [Google Scholar] [CrossRef]
- Rögner, N.; Hagedorn, H.-W.; Scherer, G.; Scherer, M.; Pluym, N. A Sensitive LC–MS/MS Method for the Quantification of 3-Hydroxybenzo[a]pyrene in Urine-Exposure Assessment in Smokers and Users of Potentially Reduced-Risk Products. Separations 2021, 8, 171. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldeek, F.; Sarkar, M.A. Method Development and Applications for Reduced-Risk Products. Separations 2022, 9, 78. https://doi.org/10.3390/separations9030078
Aldeek F, Sarkar MA. Method Development and Applications for Reduced-Risk Products. Separations. 2022; 9(3):78. https://doi.org/10.3390/separations9030078
Chicago/Turabian StyleAldeek, Fadi, and Mohamadi A. Sarkar. 2022. "Method Development and Applications for Reduced-Risk Products" Separations 9, no. 3: 78. https://doi.org/10.3390/separations9030078
APA StyleAldeek, F., & Sarkar, M. A. (2022). Method Development and Applications for Reduced-Risk Products. Separations, 9(3), 78. https://doi.org/10.3390/separations9030078