Validation of an Analytical Method for the Determination of Thiabendazole in Various Food Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Food Materials
2.3. Optimisation of HPLC and LC–MS/MS Analysis Conditions
2.4. Optimisation of Extraction Method and Sample Pretreatment
2.5. Validation of the HPLC Method
2.6. Measurement Uncertainty
3. Results and Discussion
3.1. Optimisation of HPLC Conditions
3.2. Optimisation of the Extraction Method
3.3. Validation of the HPLC–PDA Method
3.4. Validation of the LC–MS/MS Method
3.5. Sample Collection and Monitoring of Residual Thiabendazole Levels
3.6. Measurement Uncertainty
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knorr, D.; Watzke, H. Food processing at a crossroad. Front. Nutr. 2019, 6, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amit, S.K.; Uddin, M.; Rahman, R.; Islam, S.M.; Khan, M.S. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 2017, 6, 1–22. [Google Scholar] [CrossRef]
- MFDS. Ministry of Food and Drug Safety (MFDS), Korea Food Additives Code. Available online: https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=72432 (accessed on 10 July 2020).
- Song, Y.S.; Hepp, M.A. US Food and Drug Administration Approach to Regulating Intelligent and Active Packaging Components, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 475–481. [Google Scholar]
- Laganà, P.; Avventuroso, E.; Romano, G.; Gioffré, M.E.; Patanè, P.; Parisi, S.; Moscato, U.; Delia, S. The Codex Alimentarius and the European Legislation on Food Additives, 1st ed.; Springer: New York, NY, USA, 2017; pp. 23–32. [Google Scholar]
- FSA. Food Standards Agency (FSA), Approved Additives and E Numbers. Available online: https://www.food.gov.uk/business-guidance/approved-additives-and-e-numbers (accessed on 15 February 2022).
- Renwick, A.G. Data-derived safety factors for the evaluation of food additives and environmental contaminants. Food Addit. Contam. 1993, 10, 275–305. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, Y.H.; Kim, J.M.; Kang, S.R.; Lee, C.; Shin, J.W.; Chun, H.S.; Lee, O.H. Current permitted status and management system of food additives in the inside and outside of the country. Korean J. Food Sci. Technol. 2014, 47, 46–53. [Google Scholar]
- Eckert, J.W.; Ogawa, J.M. The chemical control of postharvest diseases: Subtropical and tropical fruits. Annu. Rev. Phytopathol. 1985, 23, 421–454. [Google Scholar] [CrossRef]
- MFDS. Ministry of Food and Drug Safety (MFDS), Pesticide MRLs in Food. Available online: https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=71065&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=2 (accessed on 1 October 2016).
- CFR. Code of Federal Regulations (CFR) Title 40: Protection of Environment; National Archives and Records Administration, Office of the Federal Register: Washington, DC, USA, 2022. [Google Scholar]
- MHLW. Ministry of Health, Labor, and Welfare (MHLW), The Standards for Use of Food Additives. Available online: https://www.ffcr.or.jp/en/upload/StandardsforUseFeb32021.pdf (accessed on 3 February 2021).
- MHLW. Ministry of Health, Labor, and Welfare (MHLW), Regarding Establishment of Provisional Maximum Residue Limits in a Positive List System Concerning Agricultural Chemicals Residues in Food etc. Available online: https://www.mhlw.go.jp/english/topics/mrls/final/dl/mrls02.pdf (accessed on 31 May 2005).
- Jang, G.W.; Choi, S.I.; Han, X.; Men, X.; Kwon, H.Y.; Choi, Y.E.; Park, M.H.; Lee, O.H. Method validation and measurement uncertainty determination of ethoxyquin and antioxidant activity in paprika seasonings and paprika sauces frequently consumed in South Korea. Separations 2020, 7, 50. [Google Scholar] [CrossRef]
- Araujo, P. Key aspects of analytical method validation and linearity evaluation. J. Chromatogr. B 2009, 877, 2224–2234. [Google Scholar] [CrossRef]
- Taverniers, I.; Loose, M.D.; Bockstaele, E.V. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
- Baddouh, A.; Rguiti, M.M.; Mohamed, E.; Ibrahimi, B.E.; Bazzi, L.; Hilali, M. Electrochemical degradation of Thiabendazole fungicide by anodic oxidation on the tin oxide electrode (SnO2). Appl. J. Environ. Eng. Sci. 2017, 3, 213–221. [Google Scholar]
- Steck, E.A.; Nachod, F.C.; Ewing, G.W.; Gorman, N.H. Absorption spectra of heterocyclic compounds. III. Some benzimidazole derivatives. J. Am. Chem. Soc. 1948, 70, 3406–3410. [Google Scholar] [CrossRef]
- Di Muccio, A.; Girolimetti, S.; Barbini, D.A.; Pelosi, P.; Generali, T.; Vergori, L.; Merulis, G.D.; Leonelli, A.; Stefanelli, P. Selective clean-up applicable to aqueous acetone extracts for the determination of carbendazim and thiabendazole in fruits and vegetables by high-performance liquid chromatography with UV detection. J. Chromatogr. A 1999, 833, 61–65. [Google Scholar] [CrossRef]
- Turiel, E.; Tadeo, J.L.; Cormack, P.A.G.; Martin-Esteban, A. HPLC imprinted-stationary phase prepared by precipita-tion polymerisation for the determination of thiabendazole in fruit. Analyst 2005, 130, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Tuzen, M.; Altunay, N.; Elik, A.; Mogaddam, M.R.A.; Katin, K. Experimental and theoretical investigation for the spectrophotometric determination of thiabendazole in fruit samples. Microchem. J. 2021, 168, 106488. [Google Scholar] [CrossRef]
- Müller, C.; David, L.; Chiş, V.; Pînzaru, S.C. Detection of thiabendazole applied on citrus fruits and bananas using surface enhanced Raman scattering. Food Chem. 2014, 145, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Goto, T.; Oka, H.; Matsumoto, H.; Miyazaki, Y.; Takahashi, N.; Nakazawa, H. Simple and rapid determination of thiabendazole, imazalil, and o-phenylphenol in citrus fruit using flow-injection electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2003, 51, 861–866. [Google Scholar] [CrossRef]
- Ito, Y.; Ikai, Y.; Oka, H.; Hayakawa, J.; Kagami, T. Application of ion-exchange cartridge clean-up in food analysis: I. Simultaneous determination of thiabendazole and imazalil in citrus fruit and banana using high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. A 1998, 810, 81–87. [Google Scholar] [CrossRef]
- Sousa, E.S.; Pinto, L.; Araujo, M.C.U. A chemometric cleanup using multivariate curve resolution in liquid chromatography: Quantification of pesticide residues in vegetables. Microchem. J. 2017, 134, 131–139. [Google Scholar] [CrossRef]
- MFDS. Ministry of Food and Drug Safety (MFDS), Food Code. Available online: https://www.foodsafetykorea.go.kr/foodcode/01_03.jsp?idx=4 (accessed on 16 October 2020).
- Berger, T.A.; Deye, J.F. Effect of basic additives on peak shapes of strong bases separated by packed-column supercritical fluid chromatography. J. Chromatogr. Sci. 1991, 29, 310–317. [Google Scholar] [CrossRef]
- Li, X.; Tang, C.Y.; Zhong, L.L.; Lei, X.Y.; Zhao, S.; Wei, C. Determination of 11 Preservatives in Citrus by ultra performance liquid chromatography-tandem mass spectrometry. J. Food Saf. Qual. 2019, 10, 8382–8388. [Google Scholar]
- ICH. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), Validation of Analytical Procedures: Text and Methodology Q2 (R1). Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (accessed on 1 June 1995).
- Kim, J.M.; Choi, S.H.; Shin, G.H.; Lee, J.H.; Kang, S.R.; Lee, K.Y.; Lim, H.S.; Kang, T.S.; Lee, O.H. Method validation and measurement uncertainty for the simultaneous determination of synthetic phenolic antioxidants in edible oils commonly consumed in Korea. Food Chem. 2016, 213, 19–25. [Google Scholar] [CrossRef]
- NIST. National Institute of Standards and Technology (NIST), Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results Cover. Available online: https://emtoolbox.nist.gov/Publications/NISTTechnicalNote1297s.pdf (accessed on 1 September 1994).
- ISO. International Organization for Standardization (ISO), Part 3: Guide to the Expression of Uncertainty in Measurement. Available online: https://www.iso.org/standard/50462.html (accessed on 1 October 2008).
- Eurachem. Quantifying Uncertainty in Analytical Measurement, 3rd ed. Available online: https://www.eurachem.org/index.php/publications/guides/quam (accessed on 8 September 2020).
- Zuvela, P.; Skoczylas, M.; Jay, L.J.; Baczek, T.; Kaliszan, R.; Wong, M.W.; Buszewski, B. Column characterization and selection systems in reversed-phase high-performance liquid chromatography. Chem. Rev. 2019, 119, 3674–3729. [Google Scholar] [CrossRef]
- Devanshu, S.; Rahul, M.; Annu, G.; Kishan, S.; Anroop, N. Quantitative bioanalysis by LC–MS/MS: A review. J. Pharm. Biomed. Sci. 2010, 7, 1–9. [Google Scholar]
- Hao, Z.; Xiao, B.; Weng, N. Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). J. Sep. Sci. 2008, 31, 1449–1464. [Google Scholar] [CrossRef]
- Hajeb, P.; Zhu, L.; Bossi, R.; Vorkamp, K. Sample preparation techniques for suspect and non-target screening of emerging contaminants. Chemosphere 2022, 287, 132306. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Duhoranimana, E.; Zhang, Y.; Shu, P. Determination of methenamine residues in edible animal tissues by HPLC–MS/MS using a modified QuEChERS method: Validation and pilot survey in actual samples. Food Control 2016, 61, 99–104. [Google Scholar] [CrossRef]
- FDA. US Food and Drug Administration (FDA), Office of Regulatory Affairs Laboratory Manual Volume II. Available online: https://www.fda.gov/media/73920/download (accessed on 4 April 2021).
- FDA. US Food and Drug Administration (FDA), Q2B Validation of Analytical Procedures: Methodology. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/q2b-validation-analytical-procedures-methodology (accessed on 14 April 2020).
- Di Stefano, V.D.; Avellone, G.; Bongiorno, D.; Cunsolo, V.; Muccilli, V.; Sforza, S.; Dossena, A.; Drahos, L.; Vékey, K. Applications of liquid chromatography-mass spectrometry for food analysis. J. Chromatogr. A 2012, 1259, 74–85. [Google Scholar] [CrossRef]
- Song, X.; Xu, S.; Chen, L.; Wei, Y.; Xiong, H. Recent advances in molecularly imprinted polymers in food analysis. J. Appl. Polym. Sci. 2014, 131, 40766. [Google Scholar] [CrossRef] [Green Version]
- Jang, G.W.; Choi, S.I.; Choi, S.H.; Han, X.; Men, X.; Kwon, H.Y.; Choi, Y.E.; Lee, O.H. Method validation of 12 kinds of food dye in chewing gums and soft drinks, and evaluation of measurement uncertainty for soft drinks. Food Chem. 2021, 356, 129705. [Google Scholar] [CrossRef]
- Rozet, E.; Marini, R.D.; Ziemons, E.; Boulanger, B.; Hubert, P. Advances in validation, risk and uncertainty assessment of bioanalytical methods. J. Pharm. Biomed. Anal. 2011, 55, 848–858. [Google Scholar] [CrossRef]
- Aftab, N.F.; Ahmad, K.S.; Gul, M.M. Sorptive and degradative assessments of environmentally pestilential Benzimidazole fungicide Fuberidazole in pedosphere. Int. J. Environ. Anal. Chem. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- SANCO. European Commission Health & Consumer Protection, Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/library/docs/allcrl/AqcGuidance_Sanco_2013_12571.pdf (accessed on 19 November 2013).
Method | Sequence of Sample Preparation |
---|---|
Ito et al., (1998) [24] | Weigh 1 g of the liquid sample or solid sample homogenised with a mixer into a 50 mL tube and blend with 4 g of anhydrous sodium sulfate (Na2SO4), 0.3 g of anhydrous disodium hydrophosphate (Na2HPO4), and 6 mL of ethyl acetate and centrifuge for 8 min (3,100 rpm). The supernatant should then be transferred to a 15 mL tube and the residual plug extracted with 4 mL of ethyl acetate before combining the supernatants in the 50 mL tube. The sample should then be filtered with a 0.45 μm syringe filter and injected into the HPLC–PDA detector for analysis. |
Modified Ito et al., (1998) | Weigh 2 g of the liquid sample or solid sample homogenised with a mixer into a 50 mL tube and blend with 8 g of anhydrous sodium sulfate (Na2SO4), 0.3 g of anhydrous disodium hydrophosphate (Na2HPO4), and 10 mL of ethyl acetate and centrifuge for 8 min (3,100 rpm). The supernatant should then be transferred to a 15 mL tube and the residual plug extracted with 6 mL of ethyl acetate before combining the supernatants in the 50 mL tube. The sample should then be filtered with a 0.45 μm syringe filter and injected into the HPLC–PDA detector for analysis. |
Li et al., (2019) [28] | Weigh 5 g of the liquid sample or solid sample homogenised with a mixer into a 50 mL tube and then add 20 mL MeOH and vortex. After stirring for 30 s, add 2.5 g of sodium chloride. Take the supernatant after allowing it to stand for 30 min, filter it with a 0.45 μm syringe filter, and then inject it into the HPLC–PDA detector for analysis. |
Method | Analyte | Matrix | Concentration (μg/mL) | Recovery Range |
---|---|---|---|---|
Ito et al., (1998) [21] | Thiabendazole | Solid | 10 | 70.41 ± 0.20 |
Liquid | 10 | 71.95 ± 0.38 | ||
Modified Ito et al., (1998) | Thiabendazole | Solid | 10 | 79.72 ± 0.43 |
Liquid | 10 | 71.85 ± 0.75 | ||
Li et al., (2019) [24] | Thiabendazole | Solid | 10 | 94.30 ± 1.02 |
Liquid | 10 | 92.98 ± 0.52 |
Analyte | Matrix | Range (μg/mL) | Slope | Intercept | Coefficient of Determination (R2) | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|---|---|
Thiabendazole | Solid | 0.31–20 | 13,9434.02 | −8354.76 | 0.9998 | 0.009 | 0.028 |
Liquid | 0.31–20 | 1,219,294.14 | −11,353.77 | 0.9999 | 0.017 | 0.052 |
Samples | Concentration (μg/mL) | Mean ± SD (μg/mL) | RSD (%) | Recovery (%) | |
---|---|---|---|---|---|
Solid | Intra-day | 2.5 | 2.36 ± 0.09 | 0.24 | 94.57 |
5 | 4.90 ± 0.17 | 0.33 | 98.08 | ||
10 | 9.70 ± 0.42 | 0.32 | 96.97 | ||
Inter-day | 2.5 | 2.34 ± 0.09 | 1.33 | 93.61 | |
5 | 4.88 ± 0.26 | 0.53 | 97.63 | ||
10 | 9.70 ± 0.42 | 0.43 | 97.00 | ||
Liquid | Intra-day | 2.5 | 2.38 ± 0.05 | 0.23 | 95.20 |
5 | 4.87 ± 0.13 | 0.26 | 97.45 | ||
10 | 9.67 ± 0.27 | 0.28 | 96.71 | ||
Inter-day | 2.5 | 2.37 ± 0.06 | 0.23 | 94.88 | |
5 | 4.87 ± 0.16 | 0.33 | 97.37 | ||
10 | 9.65 ± 0.31 | 0.32 | 96.52 |
Analyte | Matrix | Range (μg/mL) | Slope | Intercept | Coefficient of Determination (R2) | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|---|---|
Thiabendazole | Liquid | 0.3–5 | 2,992,813 | 574,458 | 0.9994 | 0.62 | 1.83 |
Analyte | Uprep | URM | Ustd | Ucal | Urep | U |
---|---|---|---|---|---|---|
Thiabendazole | 0.0009 | 0.0082 | 0.0027 | 0.0234 | 0.0031 | 0.4975 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.-I.; Han, X.; Lee, S.-J.; Men, X.; Oh, G.; Lee, D.-S.; Lee, O.-H. Validation of an Analytical Method for the Determination of Thiabendazole in Various Food Matrices. Separations 2022, 9, 135. https://doi.org/10.3390/separations9060135
Choi S-I, Han X, Lee S-J, Men X, Oh G, Lee D-S, Lee O-H. Validation of an Analytical Method for the Determination of Thiabendazole in Various Food Matrices. Separations. 2022; 9(6):135. https://doi.org/10.3390/separations9060135
Chicago/Turabian StyleChoi, Sun-Il, Xionggao Han, Se-Jeong Lee, Xiao Men, Geon Oh, Doo-Sik Lee, and Ok-Hwan Lee. 2022. "Validation of an Analytical Method for the Determination of Thiabendazole in Various Food Matrices" Separations 9, no. 6: 135. https://doi.org/10.3390/separations9060135
APA StyleChoi, S.-I., Han, X., Lee, S.-J., Men, X., Oh, G., Lee, D.-S., & Lee, O.-H. (2022). Validation of an Analytical Method for the Determination of Thiabendazole in Various Food Matrices. Separations, 9(6), 135. https://doi.org/10.3390/separations9060135