Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,278)

Search Parameters:
Keywords = food matrices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2775 KB  
Review
Tracking Lead: Potentiometric Tools and Technologies for a Toxic Element
by Martyna Drużyńska, Nikola Lenar and Beata Paczosa-Bator
Molecules 2025, 30(17), 3492; https://doi.org/10.3390/molecules30173492 (registering DOI) - 25 Aug 2025
Abstract
Lead contamination remains a critical global concern due to its persistent toxicity, bioaccumulative nature, and widespread occurrence in water, food, and industrial environments. The accurate, cost-effective, and rapid detection of lead ions (Pb2+) is essential for protecting public health and ensuring [...] Read more.
Lead contamination remains a critical global concern due to its persistent toxicity, bioaccumulative nature, and widespread occurrence in water, food, and industrial environments. The accurate, cost-effective, and rapid detection of lead ions (Pb2+) is essential for protecting public health and ensuring environmental safety. Among the available techniques, potentiometric sensors, particularly ion-selective electrodes (ISEs), have emerged as practical tools owing to their simplicity, portability, low power requirements, and high selectivity. This review summarizes recent progress in lead-selective potentiometry, with an emphasis on electrode architectures and material innovations that enhance analytical performance. Reported sensors achieve detection limits as low as 10−10 M, broad linear ranges typically spanning 10−10–10−2 M, and near-Nernstian sensitivities of ~28–31 mV per decade. Many designs also demonstrate reproducible responses in complex matrices. Comparative analysis highlights advances in traditional liquid-contact electrodes and modern solid-contact designs modified with nanomaterials, ionic liquids, and conducting polymers. Current challenges—including long-term stability, calibration frequency, and selectivity against competing metal ions—are discussed, and future directions for more sensitive, selective, and user-friendly Pb2+ sensors are outlined. Full article
Show Figures

Figure 1

30 pages, 6393 KB  
Review
Electrochemical Sensors for Chloramphenicol: Advances in Food Safety and Environmental Monitoring
by Matiar M. R. Howlader, Wei-Ting Ting and Md Younus Ali
Pharmaceuticals 2025, 18(9), 1257; https://doi.org/10.3390/ph18091257 - 24 Aug 2025
Abstract
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food [...] Read more.
Excessive use of antibiotics can lead to antibiotic resistance, posing a significant threat to human health and the environment. Chloramphenicol (CAP), once widely used, has been banned in many regions for over 20 years due to its toxicity. Detecting CAP residues in food products is crucial for regulating safe use and preventing unnecessary antibiotic exposure. Electrochemical sensors are low-cost, sensitive, and easily detect CAP. This paper reviews recent research on electrochemical sensors for CAP detection, with a focus on the materials and fabrication techniques employed. The sensors are evaluated based on key performance parameters, including limit of detection, sensitivity, linear range, selectivity, and the ability to perform simultaneous detection. Specifically, we highlight the use of metal and carbon-based electrode modifications, including gold nanoparticles (AuNPs), nickel–cobalt (Ni-Co) hollow nano boxes, platinum–palladium (Pt-Pd), graphene (Gr), and covalent organic frameworks (COFs), as well as molecularly imprinted polymers (MIPs) such as polyaniline (PANI) and poly(o-phenylenediamine) (P(o-PD)). The mechanisms by which these modifications enhance CAP detection are discussed, including improved conductivity, increased surface-to-volume ratio, and enhanced binding site availability. The reviewed sensors demonstrated promising results, with some exhibiting high selectivity and sensitivity, and the effective detection of CAP in complex sample matrices. This review aims to support the development of next-generation sensors for antibiotic monitoring and contribute to global efforts to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Application of Biosensors in Pharmaceutical Research)
Show Figures

Graphical abstract

13 pages, 5801 KB  
Article
Sustainable Precursor-Based Titanium Dioxide–Graphene Nanocomposite Electrochemical Sensor for Sensitive Detection of Diuron in Vegetables
by Lisi Wang, Xiaoqing Li, Yijing Ai, Brij Mohan, Hongji Li, Zhisong Lu, Baoli Wang and Wei Sun
Foods 2025, 14(17), 2946; https://doi.org/10.3390/foods14172946 - 24 Aug 2025
Abstract
The persistent presence of pesticide residues in vegetables raises significant concerns for food safety and public health, highlighting the need for sensing platforms that are efficient, affordable, and environmentally friendly while minimizing analysis time and reagent use. In this study, we developed a [...] Read more.
The persistent presence of pesticide residues in vegetables raises significant concerns for food safety and public health, highlighting the need for sensing platforms that are efficient, affordable, and environmentally friendly while minimizing analysis time and reagent use. In this study, we developed a laser-induced graphene electrode (LIGE) modified with a titanium dioxide–Enteromorpha-derived carbon composite (TiO2@EDC) for the sensitive electrochemical detection of the herbicide diuron in vegetables. This integrated system streamlines material synthesis, electrode fabrication, and electrochemical analysis into a single, practical platform for food safety monitoring. Under optimized conditions, this sensor exhibited a wide linear detection range of 0.01 µM to 1 mM, with a low limit of detection of 2.99 nM (3 S/N) and a limit of quantification of 9.98 nM (10 S/N). Notably, the sensor demonstrated excellent analytical performance in real vegetable samples by accurately quantifying diuron residues in lettuce, indicating its potential for on-site monitoring of pesticide contamination in food matrices to ensure food safety. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

29 pages, 2598 KB  
Review
Exploring the Integration of Anthocyanins with Functional Materials in Smart Food Packaging: From Stabilization to Application
by Xiaowei Huang, Ke Zhang, Zhihua Li, Junjun Zhang, Xiaodong Zhai, Ning Zhang, Liuzi Du and Zhou Qin
Foods 2025, 14(16), 2896; https://doi.org/10.3390/foods14162896 - 20 Aug 2025
Viewed by 141
Abstract
Anthocyanins, the most ubiquitous water-soluble phytopigments in terrestrial flora, have garnered substantial attention in sustainable food packaging research owing to their exceptional chromatic properties, pH-responsive characteristics, and putative health-promoting effects. Nevertheless, their inherent chemical lability manifests as rapid chromatic fading, structural degradation, and [...] Read more.
Anthocyanins, the most ubiquitous water-soluble phytopigments in terrestrial flora, have garnered substantial attention in sustainable food packaging research owing to their exceptional chromatic properties, pH-responsive characteristics, and putative health-promoting effects. Nevertheless, their inherent chemical lability manifests as rapid chromatic fading, structural degradation, and compromised bioactivity/bioavailability, ultimately restricting industrial implementation and incurring significant economic penalties. Recent advances in stabilization technologies through molecular encapsulation within polymeric matrices or nanoscale encapsulation systems have demonstrated remarkable potential for preserving anthocyanin integrity while augmenting multifunctionality. The integration of anthocyanins into advanced functional materials has emerged as a promising strategy for enhancing food safety and extending shelf life through smart packaging solutions. Despite their exceptional chromatic and bioactive properties, anthocyanins face challenges such as chemical instability under environmental stressors, limiting their industrial application. Recent advancements in stabilization technologies, including molecular encapsulation within polymeric matrices and nanoscale systems, have demonstrated significant potential in preserving anthocyanin integrity while enhancing multifunctionality. This review systematically explores the integration of anthocyanins with natural polymers, nanomaterials, and hybrid architectures, focusing on their roles as smart optical sensors, bioactive regulators, and functional components in active and smart packaging systems. Furthermore, the molecular interactions and interfacial phenomena governing anthocyanin stabilization are elucidated. The review also addresses current technological constraints and proposes future directions for scalable, sustainable, and optimized implementations in food preservation. Full article
Show Figures

Graphical abstract

26 pages, 610 KB  
Review
Enhancing the Nutritional Value of Foods Through Probiotics and Dietary Fiber from Fruit and Berry Pomace
by Jolita Jagelavičiūtė, Loreta Bašinskienė and Dalia Čižeikienė
Fermentation 2025, 11(8), 481; https://doi.org/10.3390/fermentation11080481 - 20 Aug 2025
Viewed by 396
Abstract
The growing demand for health-promoting food products has led to increased efforts to develop formulations enriched with probiotics and dietary fiber (DF). While traditional fermented foods remain widely recognized sources of probiotics, there is a pressing need to innovate novel, nutritious, and high-quality [...] Read more.
The growing demand for health-promoting food products has led to increased efforts to develop formulations enriched with probiotics and dietary fiber (DF). While traditional fermented foods remain widely recognized sources of probiotics, there is a pressing need to innovate novel, nutritious, and high-quality alternatives that also incorporate additional functional ingredients. In the context of sustainable consumption and health-conscious dietary trends, fruit and berry pomace has emerged as a promising source of DF with prebiotic potential, supporting the growth and activity of beneficial gut microorganisms. A growing body of research emphasizes the potential of pomace valorization, showcasing its relevance in the development of value-added food products. This review explores the key features and selection principles for probiotic strains, particularly those from the former group of Lactobacillus species, alongside opportunities for combining probiotics with fruit and berry pomace in functional food matrices. Special attention is given to the physiological and technological attributes of DF derived from pomace, which are critical for their successful application in food systems and their potential synergistic effects with probiotics. Although numerous probiotic-enriched products are currently available, DF remains an underutilized component in many of these formulations. Research has predominantly focused on dairy-based applications; however, the increasing demand for plant-based diets calls for a shift towards non-dairy alternatives. Looking forward, future innovations should prioritize the integration of probiotics and pomace-derived DF as symbiotic systems into plant-based food products, with an emphasis on their dual roles as nutritional enhancers and potential prebiotics. Full article
Show Figures

Figure 1

20 pages, 8469 KB  
Review
Electrochemical Biosensors for Oilseed Crops: Nanomaterial-Driven Detection and Smart Agriculture
by Youwei Jiang, Kun Wan, Aiting Chen, Nana Tang, Na Liu, Tao Zhang, Qijun Xie and Quanguo He
Foods 2025, 14(16), 2881; https://doi.org/10.3390/foods14162881 - 20 Aug 2025
Viewed by 318
Abstract
Electrochemical biosensors have emerged as a promising tool for the early detection of diseases in oilseed crops such as rapeseed, soybean, and peanut. These biosensors offer high sensitivity, portability, and cost-effectiveness. Timely diagnosis is critical, as many pathogens exhibit latent infection phases or [...] Read more.
Electrochemical biosensors have emerged as a promising tool for the early detection of diseases in oilseed crops such as rapeseed, soybean, and peanut. These biosensors offer high sensitivity, portability, and cost-effectiveness. Timely diagnosis is critical, as many pathogens exhibit latent infection phases or produce invisible metabolic toxins, leading to substantial yield losses before visible symptoms occur. This review summarises recent advances in the field of nanomaterial-assisted electrochemical sensing for oilseed crop diseases, with a particular focus on sensor mechanisms, interface engineering, and biomolecular recognition strategies. The following innovations are highlighted: nanostructured electrodes, aptamer- and antibody-based probes, and signal amplification techniques. These innovations have enabled the detection of pathogen DNA, enzymes, and toxins at ultra-low concentrations. Notwithstanding these achievements, challenges persist, including signal interference from plant matrices, limitations in device miniaturization, and the absence of standardized detection protocols. Future research should explore the potential of AI-assisted data interpretation, the use of biodegradable sensor materials, and the integration of these technologies with agricultural IoT networks. The aim of this integration is to enable real-time, field-deployable disease surveillance. The integration of laboratory innovations with field applications has been demonstrated to have significant potential in supporting sustainable agriculture and strengthening food security through intelligent crop health monitoring. Full article
Show Figures

Figure 1

27 pages, 425 KB  
Review
Green Preservation Strategies: The Role of Essential Oils in Sustainable Food Preservatives
by Sara Diogo Gonçalves, Maria das Neves Paiva-Cardoso and Ana Caramelo
Sustainability 2025, 17(16), 7326; https://doi.org/10.3390/su17167326 - 13 Aug 2025
Viewed by 278
Abstract
Essential oils (EOs) have gained increasing attention as natural alternatives to synthetic food preservatives due to their broad-spectrum antimicrobial, antioxidant, and antigenotoxic properties. Derived from aromatic plants, EOs possess complex chemical compositions rich in bioactive compounds such as terpenes, phenolics, and aldehydes, which [...] Read more.
Essential oils (EOs) have gained increasing attention as natural alternatives to synthetic food preservatives due to their broad-spectrum antimicrobial, antioxidant, and antigenotoxic properties. Derived from aromatic plants, EOs possess complex chemical compositions rich in bioactive compounds such as terpenes, phenolics, and aldehydes, which contribute to their effectiveness against foodborne pathogens, oxidative spoilage, and genotoxic contaminants. This review provides a comprehensive examination of the potential of EOs in food preservation, highlighting their mechanisms of action, including membrane disruption, efflux pump inhibition, and reactive oxygen species scavenging. Standard assays such as disk diffusion, MIC/MBC, time-kill kinetics, and comet and micronucleus tests are discussed as tools for evaluating efficacy and safety. Additionally, the use of EOs in diverse food matrices and the reduction in reliance on synthetic additives support cleaner-label products and improved consumer health. The review also examines the sustainability outlook, highlighting the potential for extracting EOs from agricultural byproducts, their integration into green food processing technologies, and alignment with the circular economy and the Sustainable Development Goals. Despite promising results, challenges remain in terms of sensory impact, regulatory approval, and dose optimization. Overall, EOs represent a multifunctional and sustainable solution for modern food preservation systems. Full article
(This article belongs to the Special Issue Future Trends in Food Processing and Food Preservation Techniques)
3 pages, 142 KB  
Editorial
Trace Elements in Food: Nutritional and Safety Issues
by Cristina Couto and Elisa Keating
Foods 2025, 14(16), 2802; https://doi.org/10.3390/foods14162802 - 13 Aug 2025
Viewed by 200
Abstract
In recent years, nutrition research has underscored the critical role of trace elements in food matrices [...] Full article
(This article belongs to the Special Issue Trace Elements in Food: Nutritional and Safety Issues)
23 pages, 5300 KB  
Article
Biodegradable Antioxidant Composites with Almond Skin Powder
by Irene Gil-Guillén, Idalina Gonçalves, Paula Ferreira, Chelo González-Martínez and Amparo Chiralt
Polymers 2025, 17(16), 2201; https://doi.org/10.3390/polym17162201 - 12 Aug 2025
Viewed by 253
Abstract
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated [...] Read more.
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated polyvinilalcohol (PVA) were obtained by melt blending and compression moulding, incorporating different ratios of defatted AS powder (0, 5, 10, and 15 wt.%). The filler was better integrated in the polar PVA matrix, where more interactions were detected with the filler compounds, affecting glass transition and crystallization of the polymer. The AS particles provided the films with the characteristic colour of the powder and strong UV light-blocking effect, while improving the oxygen barrier capacity of both polymeric matrices (24% in PLA with 15% AS and 42% in PVA with 10% AS). The water vapour permeability increased in PLA (by 192% at 15% AS), but decreased in PVA films, especially with low AS content (by 19% with 5% particles). The filler also provided the PLA and PVA films with antioxidant properties due to its phenolic richness, improving the oxygen barrier capacity of the materials and delaying the unsaturated oil oxidation. This was reflected in the lower peroxide and conjugated dienes and trienes values of the sunflower oil packaged in single-dose bags of the different materials. The high oxygen barrier capacity of the PVA bags mainly controlled the preservation of the oil, which made the effect of the antioxidant AS powder less noticeable. Full article
Show Figures

Graphical abstract

18 pages, 3067 KB  
Article
Beer Bagasse as Filler for Starch-Based Biocomposite Films for Food Packaging Applications
by Paula Gómez-Contreras, Maite Cháfer, Amparo Chiralt and Chelo González-Martínez
Biomass 2025, 5(3), 46; https://doi.org/10.3390/biomass5030046 - 12 Aug 2025
Viewed by 402
Abstract
Development of biodegradable packaging materials and valorization of agri-food waste are necessary to produce more sustainable materials while reducing the environmental impact. Starch-based biocomposite films reinforced with beer bagasse fractions with different purification degrees were developed and characterized in structural, mechanical, thermal and [...] Read more.
Development of biodegradable packaging materials and valorization of agri-food waste are necessary to produce more sustainable materials while reducing the environmental impact. Starch-based biocomposite films reinforced with beer bagasse fractions with different purification degrees were developed and characterized in structural, mechanical, thermal and optical properties. To this aim, 5% and 10% (w/w) of either beer bagasse (BB) or its lignocellulosic-rich fibers (LF), obtained by subcritical water extraction at temperatures between 110 and 170 °C, were incorporated into starch matrices. Elastic modulus and tensile strength values increased by up to eight-fold and 2.5-fold, respectively, compared to the control film. The incorporation of BB or LF significantly enhanced the mechanical resistance of the films. In general, the increment in the filler:polymer ratio significantly increased the EM values (p < 0.05), while decreasing the stretchability of the films around 80–85%, regardless of the type of filler. This effect suggests a good interfacial adhesion between the fillers and the polymeric matrix, as observed by FESEM. The biocomposite films exhibited a dark reddish appearance, reduced transparency, light blocking barrier capacity and remarkable antioxidant activity due to the presence of phenolic compounds in the fibers. The water vapor and oxygen barrier properties were better preserved when using the more purified LF obtained at 170 °C. Overall, starch films reinforced with beer bagasse fractions showed strong potential for the development of biodegradable food packaging materials. Full article
Show Figures

Figure 1

20 pages, 3539 KB  
Article
Advanced Magnetic Imprinted Polymers Integrated with In Situ Ionization Mass Spectrometry for High-Throughput Pesticide Screening and Detection in Food Matrices
by Xuan Li, Feng-Lan Lv, Jun-Yun Wang, Yi-Chen Lu, Yun Li, Pan-Pan Li, Min Cao, Ya-Ru Ni and Xiao-Hui Xiong
Foods 2025, 14(16), 2786; https://doi.org/10.3390/foods14162786 - 11 Aug 2025
Viewed by 338
Abstract
This research introduces magnetic molecularly imprinted polymers (MMIPs) as a novel tool for the efficient extraction and detection of pesticide residues in food products. The MMIPs exhibit a notable adsorption capacity ranging from 15.70 to 23.57 mg g−1, showcasing their efficacy [...] Read more.
This research introduces magnetic molecularly imprinted polymers (MMIPs) as a novel tool for the efficient extraction and detection of pesticide residues in food products. The MMIPs exhibit a notable adsorption capacity ranging from 15.70 to 23.57 mg g−1, showcasing their efficacy in preconcentrating multiple pesticides. By leveraging Low-Temperature Plasma Mass Spectrometry (LTP-MS) in conjunction with MMIP-based sample pretreatment, the study achieves rapid screening of 108 pesticides in agricultural products, boasting a detection sensitivity of 86.9%. The MMIPs demonstrate exceptional selectivity, enabling swift separation in an external magnetic field, thereby reducing reliance on chemical reagents and facilitating multiple reuses. Rigorous evaluation of the MMIPs’ binding properties, magnetic separation efficiency, and reusability underscores their potential for class-selective enrichment of pesticide residues. The MMIPs were meticulously characterized using a comprehensive array of analytical techniques, including FT-IR spectrometry, SEM, TEM, VSM, and UV–vis spectrophotometry. Remarkably, the MMIPs’ performance in pesticide extraction yielded promising results, with successful qualitative detection of 78 out of 87 identified pesticides in cucumber samples, 71 out of 85 identified pesticides in tomato samples, 55 out of 64 identified pesticides in cabbage samples, and 42 out of 48 identified pesticides in leek samples, achieving recovery rates within the range of 60.12% to 119.84% for 50.91% of the identified pesticides. The screening detection limit (SDL) for the 86 pesticides in the MMMIP-LTP-MS method was set according to the corresponding maximum residue limit (MRL) in the National Food Safety Standard of China (GB 2763-2021). The quantification limits of MMMIPs-LC-TQ-MS ranged from 0.000043 to 5.52 µg g−1, with recoveries between 60.12% and 119.84%. These findings underscore the significant impact of MMIP-based sample preparation in enhancing the precision and efficiency of high-throughput determination of pesticide residues in food products. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

21 pages, 6781 KB  
Article
Tensile and Structural Properties of Antioxidant- and CaCO3-Modified Polyethylene Films
by Dmitry Myalenko, Olga Fedotova, Aleksandr Agarkov, Sergey Sirotin and Polina Poletaeva
Polymers 2025, 17(16), 2182; https://doi.org/10.3390/polym17162182 - 9 Aug 2025
Viewed by 380
Abstract
The demand for modified packaging materials increases annually. At the same time, there is growing interest in the development of functional packaging. The incorporation of modifiers, stabilizers, and fillers into polymer matrices can enhance the functionality of the material but may also negatively [...] Read more.
The demand for modified packaging materials increases annually. At the same time, there is growing interest in the development of functional packaging. The incorporation of modifiers, stabilizers, and fillers into polymer matrices can enhance the functionality of the material but may also negatively affect its safety. Polymers are susceptible to degradation, which negatively affects their strength and tensile properties under external factors (physical, chemical or environmental). Packaging containing antimicrobial and antioxidant agents is among the most promising, as it contributes to the product quality during storage. Films based on calcium carbonate (CaCO3) and dihydroquercetin (DHQ) remain insufficiently studied, despite their potential. Such materials are especially relevant for fatty products with a large contact surface area, including butter, cheese, and other solid high-fat foods. This study aimed to comprehensively investigate the structural and tensile properties of polyethylene films modified with varying contents of CaCO3 and DHQ. The films were produced via blown film extrusion using a laboratory extruder (SJ-28). Surface analysis was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Fourier-transform infrared (FTIR) spectroscopy was used to examine the film’s composition. The results showed that the introduction of more than 40.0 wt.% of CaCO3 into the polymer base affected the strength properties. The conducted studies of the physical and mechanical properties of LDPE film samples filled with CaCO3 showed significant changes in the samples containing more than 50.0 wt.% of the filler, with an increase in strength of more than 40.0%. The relative elongation at break after 50.0 wt.% decreased by more than 75.0%. These results indicate that to achieve the best strength properties for packaging materials, it is recommended to fill them to a maximum of 40.0 wt.%. The introduction of the antioxidant DHQ had almost no effect on the strength of the modified films. SEM analysis of films with high CaCO3 content and DHQ revealed visible antioxidant particles on the film surface, suggesting enhanced antioxidant potential at the interface between the film and dairy products. AFM analysis confirmed that a CaCO3 40.0 wt.% content altered the surface roughness and heterogeneity of the films. FTIR spectroscopy revealed that the incorporation of CaCO3 influenced the overall spectral profile of polyethylene, resulting in decreased peak intensities depending on the concentration of the filler. Based on these results, the modified polyethylene-based film with CaCO3 and DHQ shows potential for use as food packaging with antioxidant properties. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

20 pages, 2039 KB  
Article
Sustainable Management of Fruit By-Products Through Design Thinking: Development of an Innovative Food Product
by Sylwia Sady, Alfred Błaszczyk, Bogdan Pachołek, Anna Muzykiewicz-Szymańska, Anna Nowak, Justyna Syguła-Cholewińska, Tomasz Sawoszczuk, Stanisław Popek, Małgorzata Krzywonos, Agnieszka Piekara and Dominika Jakubowska
Sustainability 2025, 17(15), 7164; https://doi.org/10.3390/su17157164 - 7 Aug 2025
Viewed by 361
Abstract
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing [...] Read more.
Sustainable development and the circular economy have become key challenges in the modern food sector, calling for innovative solutions that reduce waste and promote the efficient use of resources. The aim of this study was to develop a functional food product by utilizing by-products from chokeberry processing, thereby contributing to circularity in food systems. The integration of design thinking with fermentation of chokeberry pomace is presented in this study as an approach to developing value-added food ingredients. Qualitative consumer research (focus group interviews, n = 36) identified preferences and expectations regarding functional foods containing by-products. Conducted by an interdisciplinary team, the project followed five stages, involving both qualitative and quantitative research. Liquid surface fermentation was performed using Aspergillus niger, selected for its proven ability to enhance the antioxidant capacity and polyphenol content of plant matrices. The optimal process was 2-day fermentation under controlled pH conditions with glucose supplementation, which significantly enhanced the quality and nutritional value of the final product. Antioxidant activity (ABTS, FRAP, CUPRAC assays), total polyphenols, anthocyanins, and proanthocyanidins were determined, showing significant increases compared to non-fermented controls. The outcome was the development of a dried, fermented chokeberry pomace product that meets consumer expectations and fulfils sustainability goals through waste reduction and innovative reuse of fruit processing by-products. Full article
(This article belongs to the Special Issue Innovative Technologies in Food Engineering Towards Sustainability)
Show Figures

Figure 1

21 pages, 1442 KB  
Article
Enzyme Modifications of Red Deer Fat to Adjust Physicochemical Properties for Advanced Applications
by Tereza Novotná, Jana Pavlačková, Robert Gál, Ladislav Šiška, Miroslav Fišera and Pavel Mokrejš
Molecules 2025, 30(15), 3293; https://doi.org/10.3390/molecules30153293 - 6 Aug 2025
Viewed by 385
Abstract
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of [...] Read more.
Red deer fat makes up approximately 7–10% of the animal’s weight and is not currently used. Regarding sustainability in the food industry, it is desirable to look for opportunities for its processing and use, not only in the food industry. The aim of this study is the enzymatic modification of red deer fat, leading to modification of its physicochemical properties, and the study of changes in phase transitions of modified fat, its structure, color, and texture. Hydrolysis was performed using sn-1,3-specific lipase at different water concentrations (10–30%) and reaction times (2–6 h). The results showed that there was a significant decrease in melting and crystallization temperatures with an increasing degree of hydrolysis, which was confirmed by differential scanning calorimetry. FTIR spectra revealed a decrease in the intensity of the ester bonds, indicating cleavage of triacylglycerols. Texture analysis of the modified fats confirmed a decrease in hardness of up to 50% and an increase in spreadability. The color parameter values remained within an acceptable range. The results show that enzymatic modification is an effective tool for targeted modification of red deer fat properties, and this expands the possibilities of its application in cosmetic matrices and food applications as functional lipids. Full article
Show Figures

Graphical abstract

41 pages, 3389 KB  
Review
Fully Green Particles Loaded with Essential Oils as Phytobiotics: A Review on Preparation and Application in Animal Feed
by Maria Sokol, Ivan Gulayev, Margarita Chirkina, Maksim Klimenko, Olga Kamaeva, Nikita Yabbarov, Mariia Mollaeva and Elena Nikolskaya
Antibiotics 2025, 14(8), 803; https://doi.org/10.3390/antibiotics14080803 - 6 Aug 2025
Viewed by 692
Abstract
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the [...] Read more.
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the food chain, thereby diminishing the efficacy of antibiotics in treating bacterial infections. Current research explores the potential of essential oils from derived medicinal plants as alternative phytobiotics. This review examines modern encapsulation strategies that incorporate essential oils into natural-origin matrices to improve their stability and control their release both in vitro and in vivo. We discuss a range of encapsulation approaches utilizing polysaccharides, gums, proteins, and lipid-based carriers. This review highlights the increasing demand for antibiotic alternatives in animal nutrition driven by regulatory restrictions, and the potential benefits of essential oils in enhancing feed palatability and stabilizing the intestinal microbiome in monogastric animals and ruminants. Additionally, we address the economic viability and encapsulation efficiency of different matrix formulations. Full article
Show Figures

Graphical abstract

Back to TopTop