Design of an Experimental Study for the Simultaneous Determination of Cefepime, Piperacillin and Tazobactam Using Micellar Organic Solvent-Free HPLC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Methods
2.2. Materials and Reagents
2.3. Stock Standard Solution Composition
2.4. Method Application on Pharmaceutical Dosage Forms
2.5. Design of the Experiment
3. Results
3.1. Method Development and Optimization
3.2. Validation of the Analytical Methodology
3.3. Application on Pharmaceutical Preparation
3.4. Evaluation of Greenness in Relation to Other Previously Published Analytical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, A.C.; Nogueira, P.J.; Paiva, J.-A. Determinants of Antimicrobial Resistance among the Different European Countries: More than Human and Animal Antimicrobial Consumption. Antibiotics 2021, 10, 834. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 1 July 2022).
- Soeorg, H.; Noortoots, A.; Karu, M.; Saks, K.; Lass, J.; Lutsar, I.; Kõrgvee, L.-T. Estimation of cefepime, piperacillin, and tazobactam clearance with iohexol-based glomerular filtration rate in paediatric patients. Eur. J. Clin. Pharmacol. 2022, 78, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Burgess, D.S.; Nathisuwan, S. Cefepime, piperacillin/tazobactam, gentamicin, ciprofloxacin, and levofloxacin alone and in combination against Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis. 2002, 44, 35–41. [Google Scholar] [CrossRef]
- Benanti, G.E.; Brown, A.R.T.; Shigle, T.L.; Tarrand, J.J.; Bhatti, M.M.; McDaneld, P.M.; Shelburne, S.A.; Aitken, S.L. Carbapenem versus cefepime or piperacillin-tazobactam for empiric treatment of bacteremia due to extended-spectrum-β-lactamase-producing Escherichia coli in patients with hematologic malignancy. Antimicrob. Agents Chemother. 2019, 63, e01813-18. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, L.; Wiebe, T.; Karpman, D. Hyperfiltration evaluated by glomerular filtration rate at diagnosis in children with cancer. Pediatr. Blood Cancer 2011, 56, 762–766. [Google Scholar] [CrossRef]
- Pandey, N.; Cascella, M. Beta Lactam Antibiotics; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Rusu, A.; Lungu, I.-A. The new fifth-generation cephalosporins–a balance between safety and efficacy. Rom. J. Pharm. Pract. 2020, 52, 121–126. [Google Scholar] [CrossRef]
- Reese, A.M.; Frei, C.R.; Burgess, D.S. Pharmacodynamics of intermittent and continuous infusion piperacillin/tazobactam and cefepime against extended-spectrum β-lactamase-producing organisms. Int. J. Antimicrob. Agents 2005, 26, 114–119. [Google Scholar] [CrossRef]
- El-Shaheny, R.N.; El-Maghrabey, M.H.; Belal, F.F. Micellar liquid chromatography from green analysis perspective. Open Chem. 2015, 13, 877–892. [Google Scholar] [CrossRef]
- García Alvarez-Coque, M.C.; Carda Broch, S. Direct injection of physiological fluids in micellar liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1999, 736, 1–18. [Google Scholar] [CrossRef]
- Ibrahim, A.E.; El Deeb, S.; Abdellatef, H.E.; Hendawy, H.A.M.; El-Abassy, O.M.; Ibrahim, H. Eco-Friendly and Sensitive HPLC and TLC Methods Validated for the Determination of Betahistine in the Presence of Its Process-Related Impurity. Separations 2022, 9, 49. [Google Scholar] [CrossRef]
- Kleijnen, J.P. Design and analysis of simulation experiments. In Proceedings of the International Workshop on Simulation, Vienna, Austria, 21–25 September 2015; Springer: Berlin/Heidelberg, Germany; pp. 3–22. [Google Scholar]
- Onyiah, L.C. Design and Analysis of Experiments: Classical and Regression Approaches with SAS; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Naicker, S.; Valero, Y.C.G.; Meija, J.L.O.; Lipman, J.; Roberts, J.A.; Wallis, S.C.; Parker, S.L. A UHPLC–MS/MS method for the simultaneous determination of piperacillin and tazobactam in plasma (total and unbound), urine and renal replacement therapy effluent. J. Pharm. Biomed. Anal. 2018, 148, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Milla, P.; Ferrari, F.; Muntoni, E.; Sartori, M.; Ronco, C.; Arpicco, S. Validation of a simple and economic HPLC-UV method for the simultaneous determination of vancomycin, meropenem, piperacillin and tazobactam in plasma samples. J. Chromatogr. B 2020, 1148, 122151. [Google Scholar] [CrossRef] [PubMed]
- Tamboli, S.R.; Patil, D.D. RP-HPLC method for simultaneous estimation of cefepime hydrochloride and tazobactam sodium in bulk and pharmaceuticals. J. Chem. 2013, 2013, 208057. [Google Scholar] [CrossRef]
- Shrestha, B.; Bhuyan, N.R.; Sinha, B.N. Simultaneous determination of cefepime and tazobactam in injectables by ultra-high performance liquid chromatography method. Pharm. Methods 2014, 5, 20–26. [Google Scholar] [CrossRef]
- D’Cunha, R.; Bach, T.; Young, B.A.; Li, P.; Nalbant, D.; Zhang, J.; Winokur, P.; An, G. Quantification of cefepime, meropenem, piperacillin, and tazobactam in human plasma using a sensitive and robust liquid chromatography-tandem mass spectrometry method, part 1: Assay development and validation. Antimicrob. Agents Chemother. 2018, 62, e00859-18. [Google Scholar] [CrossRef]
- Zander, J.; Maier, B.; Suhr, A.; Zoller, M.; Frey, L.; Teupser, D.; Vogeser, M. Quantification of piperacillin, tazobactam, cefepime, meropenem, ciprofloxacin and linezolid in serum using an isotope dilution UHPLC-MS/MS method with semi-automated sample preparation. Clin. Chem. Lab. Med. (CCLM) 2015, 53, 781–791. [Google Scholar] [CrossRef]
- Paal, M.; Zoller, M.; Schuster, C.; Vogeser, M.; Schütze, G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC–MS/MS method. J. Pharm. Biomed. Anal. 2018, 152, 102–110. [Google Scholar] [CrossRef]
- Mortensen, J.S.; Jensen, B.P.; Zhang, M.; Doogue, M. Preanalytical stability of piperacillin, tazobactam, meropenem, and ceftazidime in plasma and whole blood using liquid chromatography–tandem mass spectrometry. Ther. Drug Monit. 2019, 41, 538–543. [Google Scholar] [CrossRef]
- Al-Attas, A.; Nasr, J.J.; El-Enany, N.; Belal, F. A green capillary zone electrophoresis method for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical formulations and human plasma. Biomed. Chromatogr. 2015, 29, 1811–1818. [Google Scholar] [CrossRef]
- Bahgat, E.A.; Hafez, H.M.; El-Sayed, H.M.; Kabil, N.A. Development of a solvent-free micellar HPLC method for determination of five antidiabetic drugs using response surface methodology. Microchem. J. 2022, 179, 107446. [Google Scholar] [CrossRef]
- Guideline. ICH Guidelines for Validation of Analytical Procedures: Text and Methodology Q2 (R1). In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 2005; pp. 11–12. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 1 July 2022).
- Abd El-Hay, S.S.; Elhenawee, M.; Maged, K.; Ibrahim, A.E. Cost-effective, green HPLC determination of losartan, valsartan and their nitrosodiethylamine impurity: Application to pharmaceutical dosage forms. R. Soc. Open Sci. 2022, 9, 220250. [Google Scholar] [CrossRef] [PubMed]
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- El Deeb, S.; Ibrahim, A.E.; Al-Harrasi, A.; Wolber, G.; Gust, R. Validated Capillary Zone Electrophoresis Method for Impurity Profiling and Determination of NiII(3-OMe-Salophene). Separations 2022, 9, 25. [Google Scholar] [CrossRef]
Parameter | Chromatographic Conditions |
---|---|
Stationary phase | Chromolith® Performance RP-18e (100 mm × 4.6 mm) Column Temp: 25 °C |
Mobile phase | 15 × 10−3 M Brij-35, and 38 × 10−3 M SDS adjusted to pH 3.5 |
HPLC | Speed rate: one mL per minute Setting wavelength: 210 nm |
Composition | SDS (M) | Brij-35 (M) | pH |
---|---|---|---|
1 | 0.03 | 0.02 | 3 |
2 | 0.02 | 0.03 | 3.5 |
3 | 0.03 | 0.02 | 3.7 |
4 | 0.03 | 0.02 | 3 |
5 | 0.03 | 0.02 | 2.29 |
6 | 0.03 | 0.02 | 3 |
7 | 0.03 | 0.02 | 3 |
8 | 0.03 | 0.005 | 3 |
9 | 0.04 | 0.03 | 2.5 |
10 | 0.016 | 0.02 | 3 |
11 | 0.04 | 0.01 | 3.5 |
12 | 0.02 | 0.01 | 2.5 |
13 | 0.03 | 0.034 | 3 |
14 | 0.044 | 0.02 | 3 |
15 | 0.03 | 0.02 | 3 |
Parameter | TZB | PPC | CFM |
---|---|---|---|
Retention time (min ± SD) | 1.31 ± 0.5 | 1.95 ± 0.5 | 2.92 ± 0.4 |
Resolution (Rs) | – | 2.34 | 2.85 |
Theoretical plates, N * | 1863 | 3210 | 5368 |
Symmetry factor | 0.9 | 1.3 | 1.2 |
Linearity range (µg mL−1) | 0.62–12.50 | 5.00–100.00 | 5.0–100.00 |
Linearity equation | y = 35.42x + 3.24 | y = 87.21x − 33.72 | y = 41.29x − 59.78 |
Correlation coefficient (R2) | 0.999 | 0.999 | 0.999 |
LOD (µg mL−1) | 0.14 | 1.6 | 3.1 |
LOQ (µg mL−1) | 0.5 | 4.9 | 9.5 |
Standard | TZB | PPC | CFM | |||
---|---|---|---|---|---|---|
R% * | RSD ** | R% * | RSD ** | R% * | RSD ** | |
Repeatability | ||||||
QCL | 101.10 | 0.48 | 100.30 | 0.49 | 98.84 | 0.53 |
QCM | 99.50 | 1.08 | 101.00 | 1.08 | 100.70 | 1.39 |
QCH | 99.20 | 1.31 | 99.79 | 0.49 | 101.00 | 1.41 |
Intermediate precision | ||||||
QCL | 99.20 | 1.81 | 99.53 | 1.03 | 101.50 | 2.98 |
QCM | 98.50 | 1.94 | 99.47 | 2.03 | 101.40 | 2.45 |
QCH | 100.80 | 1.83 | 99.49 | 0.81 | 101.40 | 0.93 |
Accuracy | ||||||
QCL | 99.61 | 0.49 | 101.18 | 0.29 | 98.43 | 0.42 |
QCM | 98.80 | 1.39 | 100.54 | 0.33 | 101.80 | 0.94 |
QCH | 100.12 | 1.83 | 99.37 | 0.25 | 99.72 | 0.90 |
Drug Products (Company) | Analyte | Concentration (mg) | R% * ± RSD |
---|---|---|---|
Tazocin® vial (Sandoz) | TZB PPC | 125.0 1000.0 | 99.20 ± 3.62 100.30 ± 1.84 |
Forpar XP® vial (Cipla) | TZB CFM | 125.0 1000.0 | 98.80 ± 1.16 100.80 ± 0.13 |
Proposed Method | Reported Method [19] | |
---|---|---|
Technique | HPLC-UV | HPLC-UV |
Optimization technique | RSM * | OVAT * |
Application | Pharmaceutical dosage forms | Plasma |
Stationary phase | RP-C18, monolithic | Phenomenex Kinetex RP-C18 |
Organic modifier | Totally free | Acetonitrile |
Analytes similarity | TZB, PPC and CFM | TZB, PPC, meropenem and CFM |
Elution, run time | Isocratic, 4.0 minutes | Gradient, 7.0 minutes |
GAPI * evaluation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafez, H.M.; El Deeb, S.; Naji, E.A.A.; Aziz, Z.A.; Mahmood, A.S.; Khalil, N.I.; Ibrahim, A.E. Design of an Experimental Study for the Simultaneous Determination of Cefepime, Piperacillin and Tazobactam Using Micellar Organic Solvent-Free HPLC. Separations 2022, 9, 215. https://doi.org/10.3390/separations9080215
Hafez HM, El Deeb S, Naji EAA, Aziz ZA, Mahmood AS, Khalil NI, Ibrahim AE. Design of an Experimental Study for the Simultaneous Determination of Cefepime, Piperacillin and Tazobactam Using Micellar Organic Solvent-Free HPLC. Separations. 2022; 9(8):215. https://doi.org/10.3390/separations9080215
Chicago/Turabian StyleHafez, Hani M., Sami El Deeb, Esraa Abd Alkareem Naji, Zahraa Ali Aziz, Amaal Sajid Mahmood, Nooralhuda Ibrahim Khalil, and Adel Ehab Ibrahim. 2022. "Design of an Experimental Study for the Simultaneous Determination of Cefepime, Piperacillin and Tazobactam Using Micellar Organic Solvent-Free HPLC" Separations 9, no. 8: 215. https://doi.org/10.3390/separations9080215
APA StyleHafez, H. M., El Deeb, S., Naji, E. A. A., Aziz, Z. A., Mahmood, A. S., Khalil, N. I., & Ibrahim, A. E. (2022). Design of an Experimental Study for the Simultaneous Determination of Cefepime, Piperacillin and Tazobactam Using Micellar Organic Solvent-Free HPLC. Separations, 9(8), 215. https://doi.org/10.3390/separations9080215