Chemical Composition of the Fixed Oil of Harconia speciosa and Modulation of the Antibiotic Activity against Non-Resistant and MDR Bacterial Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Fixed Oil
2.3. Obtaining Methyl Esters and Fatty Acid Analysis
2.4. Antibacterial Analysis
2.4.1. Bacterial Material
2.4.2. Drugs
2.4.3. Minimum Inhibitory Concentration Test—MIC
2.4.4. Antibiotic Activity Modifying Effect
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Profile
3.2. Antibacterial and Antibiotic Modifying Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Freitas, P.R.; Araújo, A.C.J.; Santos Barbosa, C.R.; Muniz, D.F.; Silva, A.C.A.; Rocha, J.E.; Morais Oliveira-Tintino, C.D.; Ribeiro-Filho, J.; Silva, L.E.; Confortin, C.; et al. GC-MS-FID and potentiation of the antibiotic activity of the essential oil of Baccharis reticulata (Ruiz & Pav.) Pers. and α-pinene. Ind. Crops Prod. 2020, 145, 112106. [Google Scholar] [CrossRef]
- Tintino, S.R.; Oliveira-Tintino, C.D.M.; Campina, F.F.; Costa, M.S.; Cruz, R.P.; Pereira, R.L.S.; Andrade, J.C.; Sousa, E.O.; Siqueira-Junior, J.P.; Coutinho, H.D.M. Cholesterol and ergosterol affect the activity of Staphylococcus aureus antibiotic efflux pumps. Microb. Pathog. 2017, 104, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Pereira, Y.F.; Costa, M.D.S.; Tintino, S.R.; Rocha, J.E.; Rodrigues, F.F.G.; Feitosa, M.K.S.B.; Menezes, I.R.A.; Coutinho, H.D.M.; Costa, J.G.M.; Sousa, E.O. Modulation of the antibiotic activity by the Mauritia flexuosa (buriti) fixed oil against methicillin-resistant Staphylococcus aureus (MRSA) and other multidrug-resistant (MDR) bacterial strains. Pathogens 2018, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Nobre, C.B.; Sousa, E.O.; Silva, J.M.L.; Coutinho, H.D.; Costa, J.G. Chemical composition and antibacterial activity of fixed oils of Mauritia flexuosa and Orbignya speciosa associated with aminoglycosides. Eur. J. Integr. Med. 2018, 1, 84–89. [Google Scholar] [CrossRef]
- Sales, D.L.; Oliveira, O.P.; Cabral, M.E.; Dias, D.Q.; Kerntopf, M.R.; Coutinho, H.D.M.; Costa, J.G.M.; Freitas, F.R.; Ferreira, F.S.; Alves, R.R.; et al. Chemical identification and evaluation of the antimicrobial activity of fixed oil extracted from Rhinella jimi. Pharm. Biol. 2015, 53, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.F.; Costa, M.d.S.; Tintino, S.R.; Rodrigues, F.F.G.; Nobre, C.B.; Coutinho, H.D.M.; Costa, J.G.M.; Menezes, I.R.A.; Sousa, E.O. Antibiotic activity potentiation and physicochemical characterization of the fixed Orbignya speciosa almond oil against MDR Staphylococcus aureus and other bacteria. Antibiotics 2019, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.F.G.; Feitosa, M.K.S.B.; Costa, M.S.; Tintino, S.R.; Rodrigues, F.F.G.; Menezes, I.R.A.; Coutinho, H.D.M.; Costa, J.G.M.; Sousa, E.O. Characterization, antibacterial activity and antibiotic modifying action of the Caryocar coriaceum Wittm. pulp and almond fixed oil. Nat. Prod. Res. 2019, 34, 3239–3243. [Google Scholar] [CrossRef] [PubMed]
- Lucena, B.F.F.; Tintino, S.R.; Figueredo, F.G.; Oliveira, C.D.M.; Aguiar, J.J.S.; Cardoso, E.N.; Aquino, P.E.A.; Andrade, J.C.; Coutinho, H.D.M.; Matias, E.F.F. Evaluation of antibacterial activity of aminoglycosides and modulating the essential oil of Cymbopogon citratus (DC.) Stapf. Acta Biol. Colomb. 2015, 20, 39–45. [Google Scholar] [CrossRef]
- Torres-Rêgo, M.; Furtado, A.A.; Bitencourt, M.A.O.; Lima, M.C.J.S.; Andrade, R.C.L.C.; Azevedo, E.P.; Soares, T.C.; Tomaz, J.C.; Lopes, N.P.; Silva-Júnior, A.A. Anti-Inflammatory activity of aqueous extract and bioactive compounds identified from the fruits of Hancornia speciosa Gomes (Apocynaceae). BMC Complementary Altern. Med. 2016, 16, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.L.C.; Oliveira, E.N.A.; Almeida, E.C.; Silva, L.N.; Santos, Y.M.G.; Luna, L.C. Sensory study of alcoholic beverages mangaba (Hancornia speciosa Gomes). Braz. J. Food Technol. 2020, 23, e2019208. [Google Scholar] [CrossRef]
- Silva, T.G.M.; Paulo, R.V.C.; Nascimento, A.N.; Sousa, E.O. Elaboration and characterization of ake cnriched with pulp flour from Hancornia speciosa (Mangaba). Rev. Bras. Agrotecnol. 2021, 11, 118–123. [Google Scholar] [CrossRef]
- Vieira, M.C.; Souza, E.R.B.; Paula, M.S.P.; Naves, R.V.; Silva, G.D. Mangabeira fruits (Hancornia speciosa Gomez): A promising fruit of brazil. Sci. Elec. Arch. 2017, 10, 45–55. [Google Scholar] [CrossRef]
- Hartman, L. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475–476. [Google Scholar] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2012. [Google Scholar]
- Santos, R.M.; Santos, A.O.; Sussuchi, E.M.; Nascimento, J.S.; Lima, Á.S.; Freitas, L.S. Pyrolysis of mangaba seed: Production and characterization of bio-oil. Bioresour. Technol. 2015, 196, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.G.M.; Brito, S.A.; Nascimento, E.M.M.; Botelho, M.A.; Rodrigues, F.F.G.; Fabíola, F.G.; Coutinho, H.D.M. Antibacterial properties of pequi pulp oil (Caryocar coriaceum–WITTM.). Int. J. Food Prop. 2011, 14, 411–416. [Google Scholar] [CrossRef]
- Saraiva, R.A.; Matias, E.F.F.; Coutinho, H.D.M.; Costa, J.G.M.; Souza, H.H.F.; Fernandes, C.N.; Rocha, J.B.T.; Menezes, I.R.A. Synergistic action between Caryocar coriaceum Wittm. fixed oil with aminoglycosides in vitro. Eur. J. Lipid Sci. Technol. 2011, 113, 967–972. [Google Scholar] [CrossRef]
- Kim, S.A.; Rhee, M.S. Highly enhanced bactericidal effects of medium chain fatty acids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157: H7. Food Control. 2016, 60, 447–454. [Google Scholar] [CrossRef]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.J. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.; Zhanel, G.G.; Schweizer, F. Design, synthesis, and antibacterial activities of neomycin-lipid conjugates: Polycationic lipids with potent gram-positive activity. J. Med. Chem. 2008, 51, 6160–6164. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological Potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Order | Constituents | RT 1 | RI 2 | RI 3 | % |
---|---|---|---|---|---|
Saturated | 26.15 | ||||
1 | Nonanoic acid (C9:0) | 8.331 | 1263 | 1260 | 0.24 |
2 | Lauric acid (C12:0) | 9.364 | 1541 | 1543 | 0.38 |
3 | Myristic acid (C14:0) | 12.290 | 1750 | 1748 | 0.51 |
4 | Palmitic acid (C16:0) | 15.632 | 1942 | 1942 | 22.49 * |
5 | Ethyl tridecanoic acid (C15:0) | 16.599 | 1990 | 1986 | 0.26 |
6 | Stearic acid (C18:0) | 18.283 | 2153 | 2152 | 0.99 |
7 | 3-octyl-oxiraneoctanoic acid (C18:0) | 20.248 | 2220 | 2219 | 1.28 |
Unsaturated | 73.46 | ||||
8 | Palmitoleic acid (C16:1) | 15.284 | 1927 | 1929 | 3.20 |
9 | Elaidic acid (C18:1) | 17.949 | 2122 | 2123 | 69.50 * |
10 | Ethyl oleic acid (C20:1) | 18.738 | 2175 | 2175 | 0.76 |
Total identified | 99.61 |
Bacterial Strains | MIC (µg/mL) |
---|---|
Klebsiella pneumoniae KP-ATCC 10031 | ≥1024 |
Shigella flexneri SF-ATCC 12022 | ≥1024 |
Proteus vulgaris PV-ATCC 13315 | ≥1024 |
Escherichia coli EC-ATCC 25922 | ≥1024 |
Escherichia coli EC-06 | ≥1024 |
Bacillus cereus BC-ATCC 33018 | ≥1024 |
Staphylococcus aureus SA-10 | ≥1024 |
Staphylococcus aureus SA-ATCC 6538 | ≥512 |
Antibiotics | Staphylococcus aureus SA–10 | Escherichia coli EC–06 | ||||
---|---|---|---|---|---|---|
MIC Alone | MIC Combined | % MIC Reduction | MIC Alone | MIC Combined | % MIC Reduction | |
Amikacin | 512 ± 1.00 a | 256 ± 1.00 b | 50.00 | 256 ± 1.00 a | 256 ± 1.00 a | 0.00 |
Gentamicin | 80 ± 1.49 a | 32 ± 1.00 b | 60.00 | 64 ± 0.00 a | 12 ± 1.49 b | 81.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, E.O.d.; Costa, M.d.S.; Oliveira-Tintino, C.D.M.; Nonato, C.d.F.A.; Pinheiro, J.C.A.; Coutinho, H.D.M.; Menezes, I.R.A.d.; Costa, J.G.M. Chemical Composition of the Fixed Oil of Harconia speciosa and Modulation of the Antibiotic Activity against Non-Resistant and MDR Bacterial Strains. Separations 2022, 9, 249. https://doi.org/10.3390/separations9090249
Sousa EOd, Costa MdS, Oliveira-Tintino CDM, Nonato CdFA, Pinheiro JCA, Coutinho HDM, Menezes IRAd, Costa JGM. Chemical Composition of the Fixed Oil of Harconia speciosa and Modulation of the Antibiotic Activity against Non-Resistant and MDR Bacterial Strains. Separations. 2022; 9(9):249. https://doi.org/10.3390/separations9090249
Chicago/Turabian StyleSousa, Erlânio O. de, Maria do Socorro Costa, Cícera Datiane M. Oliveira-Tintino, Carla de Fátima A. Nonato, Jacqueline C. A. Pinheiro, Henrique Douglas M. Coutinho, Irwin Rose A. de Menezes, and José Galberto M. Costa. 2022. "Chemical Composition of the Fixed Oil of Harconia speciosa and Modulation of the Antibiotic Activity against Non-Resistant and MDR Bacterial Strains" Separations 9, no. 9: 249. https://doi.org/10.3390/separations9090249
APA StyleSousa, E. O. d., Costa, M. d. S., Oliveira-Tintino, C. D. M., Nonato, C. d. F. A., Pinheiro, J. C. A., Coutinho, H. D. M., Menezes, I. R. A. d., & Costa, J. G. M. (2022). Chemical Composition of the Fixed Oil of Harconia speciosa and Modulation of the Antibiotic Activity against Non-Resistant and MDR Bacterial Strains. Separations, 9(9), 249. https://doi.org/10.3390/separations9090249