A Novel Reconstruction Method to Increase Spatial Resolution in Electron Probe Microanalysis
Abstract
:1. Increasing the Spatial Resolution in EPMA
2. Deterministic k-Ratio Model
2.1. Parameterized Material Description
2.2. k-Ratios as a Function of the Electron Number Density
2.3. M1-Model of Electron Transport
Boundary Conditions
3. Inverse Problem of Material Reconstruction
3.1. PDE-Constrained Optimization Problem
3.2. Iterative Gradient Based Optimization
3.3. The Adjoint State Method
3.4. Adjoint State Method for the M1-Model Constraint
- the solution of the forward equation for ,
- the solution of the adjoint Equation (18) for and
- the calculation of the gradient
4. Numerical Implementation
4.1. Material Parameterization
4.2. Solving the M1-Model Using Clawpack
4.3. Implementation of the k-Ratio Model
4.4. Adaptions to Solve the Adjoint State Equation and Compute the Gradient
5. Numerical Experiments
5.1. Reconstruction on a Small Grid
5.1.1. Zeroth Moment of the Electron Fluence: M1-Model
5.1.2. Convergence to a Particular Solution
5.1.3. Synthetic Measurements
5.1.4. Objective Function
5.1.5. Reconstruction of Four Parameters
5.2. Reconstruction on Small Vertical Layers
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Additional M1-Model Equations
Appendix A.1. Stopping Power
Appendix A.2. Transport Coefficient
Appendix A.3. Eddington Factor
i | 6 | 4 | 2 | 0 |
- | - |
Appendix A.4. Jacobian of the Flux Function
References
- Reimer, L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, 2nd ed.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Bastin, G.; Heijligers, H. Quantitative Electron Probe Microanalysis of Ultra-Light Elements (Boron-Oxygen). In Electron Probe Quantitation; Springer: Boston, MA, USA, 1991; Chapter 8; pp. 145–161. [Google Scholar] [CrossRef] [Green Version]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2005. [Google Scholar] [CrossRef] [Green Version]
- Pouchou, J.L.; Pichoir, F. Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP”. In Electron Probe Quantitation; Springer: Boston, MA, USA, 1991; Chapter 4; pp. 31–75. [Google Scholar] [CrossRef]
- Bastin, G.; Dijkstra, J.; Heijligers, H. PROZA96: An improved matrix correction program for electron probe microanalysis, based on a double Gaussian ϕ(ρz) approach. X-Ray Spectrom. 1998, 27, 3–10. [Google Scholar] [CrossRef]
- Packwood, R.; Brown, J. A Gaussian expression to describe ϕ(ρz) curves for quantitative electron probe microanalysis. X-Ray Spectrom. 1981, 10, 138–146. [Google Scholar] [CrossRef]
- Love, G.; Sewell, D.; Scott, V. An improved absorption correction for quantitative analysis. J. Phys. Colloq. 1984, 45, C2-21–C2-24. [Google Scholar] [CrossRef] [Green Version]
- Buse, B.; Kearns, S.L. Spatial resolution limits of EPMA. IOP Conf. Ser. Mater. Sci. Eng. 2020, 891, 012005. [Google Scholar] [CrossRef]
- Moy, A.; Fournelle, J. Analytical Spatial Resolution in EPMA: What is it and How can it be Estimated? Microsc. Microanal. 2017, 23, 1098–1099. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, P.K.; Jolliff, B.L. Improvements in EPMA: Spatial Resolution and Analytical Accuracy. Microsc. Microanal. 2015, 21, 1443–1444. [Google Scholar] [CrossRef] [Green Version]
- Ammann, N.; Karduck, P. A further developed Monte Carlo model for the quantitative EPMA of complex samples. In Microbeam Analysis; Michael, J., Ingram, P., Eds.; San Francisco Press: San Francisco, CA, USA, 1990; pp. 150–154. [Google Scholar]
- Joy, D.C. An introduction to Monte Carlo simulations. Scanning Microsc. 1991, 5, 329–337. [Google Scholar]
- Ritchie, N.W. A new Monte Carlo application for complex sample geometries. Surf. Interface Anal. 2005, 37, 1006–1011. [Google Scholar] [CrossRef]
- Gauvin, R.; Lifshin, E.; Demers, H.; Horny, P.; Campbell, H. Win X-ray: A new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope. Microsc. Microanal. 2006, 12, 49–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvat, F. PENELOPE-2014: A Code System for Monte Carlo Simulation of Electron and Photon Transport; OECD/NEA Data Bank: Issy-les-Moulineaux, France, 2015. [Google Scholar]
- Buenger, J.; Richter, S.; Torrilhon, M. A deterministic model of electron transport for electron probe microanalysis. IOP Conf. Ser. Mater. Sci. Eng. 2018, 304, 012004. [Google Scholar] [CrossRef] [Green Version]
- Mevenkamp, N.; Pinard, P.; Richter, S.; Torrilhon, M. On a hyperbolic conservation law of electron transport in solid materials for electron probe microanalysis. Bull. Braz. Math. Soc. New Ser. 2016, 47, 575–588. [Google Scholar] [CrossRef]
- Mevenkamp, N. Inverse Modeling in Electron Probe Microanalysis Based on Deterministic Transport Equations. Master’s Thesis, RWTH Aachen University, Aachen, Germany, 2013. [Google Scholar]
- Duclous, R.; Dubroca, B.; Frank, M. A deterministic partial differential equation model for dose calculation in electron radiotherapy. Phys. Med. Biol. 2010, 55, 3843. [Google Scholar] [CrossRef] [PubMed]
- Larsen, E.W.; Miften, M.M.; Fraass, B.A.; Bruinvis, I.A.D. Electron dose calculations using the Method of Moments. Med. Phys. 1997, 24, 111–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claus, T.; Torrilhon, M.; Bünger, J. tam724/m1epma: Initial Release v0.1.0. 2021. Available online: https://doi.org/10.5281/zenodo.4742827 (accessed on 9 July 2021).
- Claus, T. Application of the Adjoint Method in Gradient-Based Optimization to the M1-Model in Electron Beam Microanalysis. Bachelor’s Thesis, RWTH Aachen University, Aachen, Germany, 2018. Available online: https://publications.rwth-aachen.de/record/818520 (accessed on 9 July 2021).
- Hubbell, J.; Seltzer, S. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (Version 1.4); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2004; Available online: http://physics.nist.gov/xaamdi (accessed on 9 July 2021).
- Powell, C. Cross sections for inelastic electron scattering in solids. Ultramicroscopy 1989, 28, 24–31. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Trehan, P.N.; Singh, N.; Chand, B.; Mehta, D.; Garg, M.L.; Garg, R.R.; Singh, S.; Puri, S. A Review, Bibliography, and Tabulation of K, L, and Higher Atomic Shell X-Ray Fluorescence Yields. J. Phys. Chem. Ref. Data 1994, 23, 339–364, Erratum in 2004, 33, 621. [Google Scholar] [CrossRef]
- LeVeque, R.J.L.; Crighton, D. Finite Volume Methods for Hyperbolic Problems; Cambridge Texts in Applied Mathematics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Clawpack Development Team. Clawpack Software, 2019. Version 5.6.0. Available online: https://doi.org/10.5281/zenodo.3237295 (accessed on 9 July 2021).
- Mandli, K.T.; Ahmadia, A.J.; Berger, M.; Calhoun, D.; George, D.L.; Hadjimichael, Y.; Ketcheson, D.I.; Lemoine, G.I.; LeVeque, R.J. Clawpack: Building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2016, 2, e68. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization, 2nd ed.; Springer Series in Operations Research and Financial Engineering; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Madsen, K.; Nielsen, H.B.; Tingleff, O. Methods for Non-Linear Least Squares Problems, 2nd ed.; Technical University of Denmark: Lyngby, Denmark, 2004. [Google Scholar]
- Rackauckas, C.; Ma, Y.; Dixit, V.; Guo, X.; Innes, M.; Revels, J.; Nyberg, J.; Ivaturi, V. A Comparison of Automatic Differentiation and Continuous Sensitivity Analysis for Derivatives of Differential Equation Solutions. arXiv 2018, arXiv:1812.01892. [Google Scholar]
- Plessix, R.E. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 2006, 167, 495–503. [Google Scholar] [CrossRef]
- Métivier, L.; The SEISCOPE Group. Numerical Optimization and Adjoint State Methods for Large-Scale Nonlinear Least-Squares Problems; Joint Inversion Summer School: Barcelonnette, France, 2015. [Google Scholar]
- Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M.J.; Leary, C.; Maclaurin, D.; Necula, G.; Paszke, A.; VanderPlas, J.; Wanderman-Milne, S.; et al. JAX: Composable transformations of Python+NumPy Programs. 2018. Available online: http://github.com/google/jax (accessed on 9 July 2021).
spatial domain | |
spatial grid | , , |
spatial grid (reference) | |
energy range | |
energy steps | 350 |
beam configuration | , |
k-ratios | , |
detector position |
beam energies and positions | , , , , , |
beam widths | , |
spatial domain | |
reconstruction pixel | |
spatial grid | |
energy range | |
energy steps | 200 |
beam positions | |
beam energy | |
k-ratios | , , |
detector position |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claus, T.; Bünger, J.; Torrilhon, M. A Novel Reconstruction Method to Increase Spatial Resolution in Electron Probe Microanalysis. Math. Comput. Appl. 2021, 26, 51. https://doi.org/10.3390/mca26030051
Claus T, Bünger J, Torrilhon M. A Novel Reconstruction Method to Increase Spatial Resolution in Electron Probe Microanalysis. Mathematical and Computational Applications. 2021; 26(3):51. https://doi.org/10.3390/mca26030051
Chicago/Turabian StyleClaus, Tamme, Jonas Bünger, and Manuel Torrilhon. 2021. "A Novel Reconstruction Method to Increase Spatial Resolution in Electron Probe Microanalysis" Mathematical and Computational Applications 26, no. 3: 51. https://doi.org/10.3390/mca26030051
APA StyleClaus, T., Bünger, J., & Torrilhon, M. (2021). A Novel Reconstruction Method to Increase Spatial Resolution in Electron Probe Microanalysis. Mathematical and Computational Applications, 26(3), 51. https://doi.org/10.3390/mca26030051