An Experimental Study of Strategies to Control Diversity in Grouping Mutation Operators: An Improvement to the Adaptive Mutation Operator for the GGA-CGT for the Bin Packing Problem
Abstract
:1. Introduction
2. Related Work
3. Grouping Genetic Algorithm with Controlled Gene Transmission
3.1. Adaptive Mutation Operator
Rearrangement by Pairs
3.2. Analysis of GGA-CGT Performance
4. Experimental Study to Control the Diversity of the Adaptive Mutation Operator
4.1. Diversity Control with Adaptive Sorting Strategies of Mutation Operators
4.2. Proposal 1: Gene Sorting
4.3. Proposal 2: Item Sorting
- In the first approach, all the items are arranged by using a random permutation.
- The second method leverages the threshold defined in Equation (5). The rule is as follows: A random number is generated with a uniform distribution, such that . If , a random permutation is applied to the items; otherwise, they are sorted in descending order according to their weights.
5. Experimental Results and Analysis
5.1. Performance of Gene Sorting Strategies
5.2. Performance of Free Item Sorting Strategies
6. Comparison Between the Original GGA-CGT and the Adaptive Strategy for Mutation Control
6.1. Limitations of the Adaptive Strategies for the Mutation Operator
6.2. Statistical Test
7. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York, NY, USA, 1979. [Google Scholar]
- Martello, S. Knapsack Problems: Algorithms and Computer Implementations; J. Wiley & Sons: Chichester, NY, USA, 1990. [Google Scholar]
- Ramos-Figueroa, O.; Quiroz-Castellanos, M.; Mezura-Montes, E.; Schütze, O. Metaheuristics to solve grouping problems: A review and a case study. Swarm Evol. Comput. 2020, 53, 100643. [Google Scholar] [CrossRef]
- González-San-Martín, J.; Cruz-Reyes, L.; Gómez-Santillán, C.; Fraire, H.; Rangel-Valdez, N.; Dorronsoro, B.; Quiroz-Castellanos, M. Comparative Study of Heuristics for the One-Dimensional Bin Packing Problem. In Hybrid Intelligent Systems Based on Extensions of Fuzzy Logic, Neural Networks and Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2023; pp. 293–305. [Google Scholar]
- Ramos-Figueroa, O.; Quiroz-Castellanos, M.; Mezura-Montes, E.; Kharel, R. Variation Operators for Grouping Genetic Algorithms: A Review. Swarm Evol. Comput. 2021, 60, 100796. [Google Scholar] [CrossRef]
- Quiroz-Castellanos, M.; Cruz-Reyes, L.; Torres-Jimenez, J.; Gómez, S.C.; Huacuja, H.J.F.; Alvim, A.C. A Grouping Genetic Algorithm with Controlled Gene Transmission for the Bin Packing Problem. Comput. Oper. Res. 2015, 55, 52–64. [Google Scholar] [CrossRef]
- Carmona-Arroyo, G.; Vázquez-Aguirre, J.B.; Quiroz-Castellanos, M. One-Dimensional Bin Packing Problem: An Experimental Study of Instances Difficulty and Algorithms Performance; Springer: Cham, Germany, 2021; Volume 940. [Google Scholar]
- Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing, 2nd ed.; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Falkenauer, E. A hybrid grouping genetic algorithm for bin packing. J. Heuristics 1996, 2, 5–30. [Google Scholar] [CrossRef]
- Falkenauer, E.; Delchambre, A. A genetic algorithm for bin packing and line balancing. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Los Alamitos, CA, USA, 19–23 May 1992; pp. 1186–1192. [Google Scholar] [CrossRef]
- Cruz-Reyes, L.; Quiroz-Castellanos, M.; Alvim, A.C.F.; Huacuja, H.J.F.; Gómez, C.; Torres-Jiménez, J. Heurísticas de agrupación híbridas eficientes para el problema de empacado de objetos en contenedores. Comput. Sist. 2012, 16, 349–360. [Google Scholar]
- González-San-Martín, J.E. Un Estudio Formal de Heurísticas Para el Problema de Empacado de Objetos de una Dimensión. Master’s Thesis, Instituto Tecnológico de Ciudad Madero, Ciudad Madero, Mexico, 2021. [Google Scholar]
- Amador-Larrea, S. Un Estudio de Operadores Genéticos de Cruza para el Problema de Empacado de Objetos en Contenedores. Master’s Thesis, Universidad Veracruzana, Veracruz, México, 2022. [Google Scholar]
- Eiben, A.; Hinterding, R.; Michalewicz, Z. Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 1999, 3, 124–141. [Google Scholar] [CrossRef]
- Karafotias, G.; Hoogendoorn, M.; Eiben, A.E. Parameter Control in Evolutionary Algorithms: Trends and Challenges. IEEE Trans. Evol. Comput. 2015, 19, 167–187. [Google Scholar] [CrossRef]
- Bhatia, A.; Basu, S.K. Packing bins using multi-chromosomal genetic representation and better-fit heuristic. In Proceedings of the International Conference on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2004; pp. 181–186. [Google Scholar]
- Singh, A.; Gupta, A.K. Two heuristics for the one-dimensional bin-packing problem. OR Spectr. 2007, 29, 765–781. [Google Scholar] [CrossRef]
- Agustín-Blas, L.E.; Salcedo-Sanz, S.; Ortiz-García, E.G.; Portilla-Figueras, A.; Pérez-Bellido, Á.M.; Jiménez-Fernández, S. Team formation based on group technology: A hybrid grouping genetic algorithm approach. Comput. Oper. Res. 2011, 38, 484–495. [Google Scholar] [CrossRef]
- Chaurasia, S.N.; Singh, A. A hybrid evolutionary approach to the registration area planning problem. Appl. Intell. 2014, 41, 1127–1149. [Google Scholar] [CrossRef]
- Jawahar, N.; Subhaa, R. An adjustable grouping genetic algorithm for the design of cellular manufacturing system integrating structural and operational parameters. J. Manuf. Syst. 2017, 44, 115–142. [Google Scholar] [CrossRef]
- Rossi, A.; Singh, A.; Sevaux, M. A metaheuristic for the fixed job scheduling problem under spread time constraints. Comput. Oper. Res. 2010, 37, 1045–1054. [Google Scholar] [CrossRef]
- Peddi, S.; Singh, A. Grouping Genetic Algorithm for Data Clustering. In Proceedings of the Swarm, Evolutionary, and Memetic Computing; Panigrahi, B.K., Suganthan, P.N., Das, S., Satapathy, S.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 225–232. [Google Scholar]
- Balasch-Masoliver, J.; Muntés-Mulero, V.; Nin, J. Using genetic algorithms for attribute grouping in multivariate microaggregation. Intell. Data Anal. 2014, 18, 819–836. [Google Scholar] [CrossRef]
- Ramos-Figueroa, O.; Quiroz-Castellanos, M. An experimental approach to designing grouping genetic algorithms. Swarm Evol. Comput. 2024, 86, 101490. [Google Scholar] [CrossRef]
- Ramos-Figueroa, O.; Quiroz-Castellanos, M.; Mezura-Montes, E.; Cruz-Ramírez, N. An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem. Math. Comput. Appl. 2023, 28, 6. [Google Scholar] [CrossRef]
- Fernández-Solano, O. Un Estudio Experimental de Operadores de Mutación para el Algoritmo Genético de Agrupación Para la Segmentación de Imágenes en RGB. Master’s Thesis, Universidad Veracruzana, Veracruz, México, 2023. [Google Scholar]
- Zavaleta-García, N.A. Estudio Experimental de Operadores Genéticos de Cruza Para el Problema de Segmentación de Imágenes en Color. Master’s Thesis, Universidad Veracruzana, Veracruz, México, 2023. [Google Scholar]
- Yorgancılar, G. Effects of Evolutionary Operators in Grouping Genetic Algorithms on Diversity and Result Quality. Master’s Thesis, TED University, Ankara, Turkey, 2020. [Google Scholar]
- Perez, A.; Michelt, J. Optimización Generalizada para Problemas de Agrupación: Un Enfoque Coevolutivo Auto-Adaptativo. 2024. Available online: https://rinacional.tecnm.mx/jspui/handle/TecNM/7945 (accessed on 12 December 2024).
- Carmona-Arroyo, G. A Grouping Genetic Algorithm for Variable Decomposition in Large-Scale Constrained Optimization Problems. Master’s Thesis, Universidad Veracruzana, Veracruz, Mexico, 2024. [Google Scholar]
- Ramos-Figueroa, O.; Quiroz-Castellanos, M.; Carmona-Arroyo, G.; Vázquez, B.; Kharel, R. Parallel-Machine Scheduling Problem: An Experimental Study of Instances Difficulty and Algorithms Performance. In Recent Advances of Hybrid Intelligent Systems Based on Soft Computing; Melin, P., Castillo, O., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 13–49. [Google Scholar] [CrossRef]
Author | Year | Problem | Main Modification |
---|---|---|---|
Yorgancılar [28] | 2020 | 1D-BPP, UALBP | Comparison of the techniques used in the GGA-CGT and GGA algorithms is performed, with the objective of measuring and analyzing performance when these techniques are modified one by one or combined. |
González-San-Martín [12] | 2021 | 1D-BPP | Problem reduction and a diversification technique are proposed. |
Amador-Larrea [13] | 2022 | 1D-BPP | The FI-GLX-1 crossover operator is proposed. |
Ramos-Figueroa et al. [25] | 2023 | Use of the adapted Gene-Level Crossover (AGLX) operator and the Download Mutation Operator, both specifically adapted to the problem being solved. | |
Zavaleta-García [27] | 2023 | ISP | The use of a new evaluation function focused on intracluster distance, random initial population generation, a repair method adapted to the problem, and the use of the FI-GLX-1 crossover operator is proposed. |
Fernández-Solano [26] | 2023 | ISP | The use of a new evaluation function focused on intracluster distance, a random initial population generation, a repair method adapted to the problem, and the use of the Item Elimination operator is proposed. |
Perez et al. [29] | 2024 | 1D-BPP, | Part of the coevolutionary cooperation algorithm in one of its phases. Use of the BF-ñ technique for initial solution generation and the Grouping Mutation Operator. |
Carmona-Arroyo [30] | 2024 | VD–LSCOP | Application of the replacement operator techniques and controlled selection from the GGA-CGT to the proposed GGA. |
Class | Bin Capacity | Optimal Solutions | Average Number of Individuals with Repeated Fitness After Mutation |
---|---|---|---|
BPP.25 | 100 | 100 | 1.26 |
1000 | 100 | 0.11 | |
10,000 | 100 | 0.04 | |
100,000 | 100 | 0.49 | |
1,000,000 | 100 | 1.08 | |
10,000,000 | 30 | 2.11 | |
100,000,000 | 0 | 0.11 | |
Total | 530 | 0.74 | |
BPP.5 | 100 | 100 | 0.08 |
1000 | 100 | 0.11 | |
10,000 | 99 | 0.30 | |
100,000 | 99 | 0.96 | |
1,000,000 | 2 | 1.64 | |
10,000,000 | 3 | 0.24 | |
100,000,000 | 32 | 0.28 | |
Total | 435 | 0.52 | |
BPP.75 | 100 | 100 | 0.15 |
1000 | 100 | 1.58 | |
10,000 | 95 | 5.86 | |
100,000 | 20 | 65.93 | |
1,000,000 | 58 | 68.46 | |
10,000,000 | 78 | 70.67 | |
100,000,000 | 78 | 70.33 | |
Total | 529 | 40.43 | |
BPP1 | 100 | 100 | 0.42 |
1000 | 100 | 1.99 | |
10,000 | 58 | 35.13 | |
100,000 | 74 | 55.75 | |
1,000,000 | 94 | 53.24 | |
10,000,000 | 97 | 55.58 | |
100,000,000 | 96 | 54.78 | |
Total | 619 | 36.70 | |
TOTAL | 2113 | 19.60 |
Class | Bin Capacity | GGA-CGT + Adaptive_Mutation + RP with Random Sorting of Genes | GGA-CGT + Adaptive_Mutation + RP with Adaptive Strategy to Sort Genes | ||
---|---|---|---|---|---|
Optimal Solutions | Average Number of Individuals with Repeated Fitness After Mutation | Optimal Solutions | Average Number of Individuals with Repeated Fitness After Mutation | ||
BPP.25 | 100 | 100 | 1.26 | 100 | 1.26 |
1000 | 100 | 0.11 | 100 | 0.07 | |
10,000 | 5 | 0.06 | 100 | 0.04 | |
100,000 | 0 | 0.00 | 100 | 0.38 | |
1,000,000 | 0 | 0.00 | 100 | 1.00 | |
10,000,000 | 0 | 0.00 | 37 | 2.55 | |
100,000,000 | 0 | 0.00 | 0 | 0.07 | |
total | 205 | 0.20 | 537 | 0.77 | |
BPP.5 | 100 | 100 | 1.20 | 100 | 1.26 |
1000 | 44 | 0.79 | 100 | 0.19 | |
10,000 | 0 | 0.02 | 100 | 0.31 | |
100,000 | 0 | 0.00 | 99 | 0.99 | |
1,000,000 | 0 | 0.00 | 1 | 2.07 | |
10,000,000 | 0 | 0.00 | 6 | 0.14 | |
100,000,000 | 0 | 0.00 | 33 | 0.29 | |
total | 144 | 0.29 | 439 | 0.75 | |
BPP.75 | 100 | 100 | 8.62 | 100 | 3.22 |
1000 | 2 | 1.06 | 100 | 1.88 | |
10,000 | 0 | 0.06 | 92 | 3.90 | |
100,000 | 0 | 0.00 | 26 | 28.95 | |
1,000,000 | 0 | 0.00 | 67 | 33.49 | |
10,000,000 | 0 | 0.00 | 94 | 34.33 | |
100,000,000 | 0 | 0.00 | 95 | 34.63 | |
total | 102 | 1.39 | 574 | 20.06 | |
BPP1 | 100 | 100 | 10.26 | 100 | 6.52 |
1000 | 4 | 1.03 | 100 | 2.00 | |
10,000 | 9 | 0.56 | 65 | 18.67 | |
100,000 | 24 | 0.61 | 87 | 29.95 | |
1,000,000 | 31 | 0.66 | 100 | 31.90 | |
10,000,000 | 29 | 0.67 | 100 | 31.26 | |
100,000,000 | 27 | 0.61 | 99 | 32.55 | |
total | 224 | 2.06 | 651 | 21.84 | |
Total | 675 | 0.99 | 2201 | 10.85 |
Class | Bin Capacity | GGA-CGT + Adaptive_Mutation + RP with Random Sorting of Items | GGA-CGT + Adaptive_Mutation + RP with Adaptive Strategy to Sort Items | ||
---|---|---|---|---|---|
Optimal Solutions | Average Number of Individuals with Repeated Fitness After Mutation | Optimal Solutions | Average Number of Individuals with Repeated Fitness After Mutation | ||
BPP.25 | 100 | 100 | 0.00 | 100 | 0.00 |
1000 | 100 | 0.03 | 100 | 0.02 | |
10,000 | 100 | 0.04 | 100 | 0.02 | |
100,000 | 100 | 0.48 | 100 | 0.39 | |
1,000,000 | 100 | 1.07 | 100 | 0.96 | |
10,000,000 | 30 | 2.11 | 21 | 1.94 | |
100,000,000 | 0 | 0.11 | 0 | 0.06 | |
total | 530 | 4.15 | 521 | 0.48 | |
BPP.5 | 100 | 100 | 0.12 | 100 | 0.12 |
1000 | 100 | 0.11 | 100 | 0.09 | |
10,000 | 99 | 0.29 | 99 | 0.20 | |
100,000 | 99 | 0.96 | 97 | 1.00 | |
1,000,000 | 2 | 1.64 | 3 | 1.53 | |
10,000,000 | 3 | 0.24 | 5 | 0.30 | |
100,000,000 | 32 | 0.28 | 29 | 0.30 | |
total | 435 | 5.05 | 433 | 0.51 | |
BPP.75 | 100 | 100 | 0.92 | 100 | 0.92 |
1000 | 100 | 0.21 | 100 | 0.22 | |
10,000 | 95 | 0.94 | 94 | 1.13 | |
100,000 | 27 | 3.95 | 22 | 5.65 | |
1,000,000 | 65 | 2.32 | 66 | 2.54 | |
10,000,000 | 96 | 0.56 | 96 | 0.54 | |
100,000,000 | 99 | 0.24 | 100 | 0.21 | |
total | 582 | 9.33 | 578 | 1.60 | |
BPP1 | 100 | 100 | 1.13 | 100 | 1.08 |
1000 | 100 | 0.46 | 100 | 0.32 | |
10,000 | 65 | 4.13 | 59 | 4.47 | |
100,000 | 81 | 2.15 | 82 | 2.79 | |
1,000,000 | 99 | 0.37 | 98 | 0.42 | |
10,000,000 | 100 | 0.10 | 100 | 0.12 | |
100,000,000 | 100 | 0.11 | 100 | 0.12 | |
total | 645 | 6.25 | 639 | 1.33 | |
Total | 2192 | 6.19 | 2171 | 0.98 |
Class | Bin Capacity | GGA-CGT | GGA-CGT with Adaptive Strategies | ||
---|---|---|---|---|---|
Optimal Solutions | Average Number of Individuals with Repeated Fitness After Mutation | Optimal Solutions | Average Number of Individuals with Repeated Fitness After Mutation | ||
BPP.25 | 100 | 100 | 1.26 | 100 | 1.26 |
1000 | 100 | 0.11 | 100 | 0.07 | |
10,000 | 100 | 0.04 | 100 | 0.04 | |
100,000 | 100 | 0.49 | 100 | 0.38 | |
1,000,000 | 100 | 1.08 | 100 | 1.00 | |
10,000,000 | 30 | 2.11 | 37 | 2.55 | |
100,000,000 | 0 | 0.11 | 0 | 0.07 | |
total | 530 | 0.60 | 537 | 0.62 | |
BPP.5 | 100 | 100 | 0.08 | 100 | 0.88 |
1000 | 100 | 0.11 | 100 | 0.13 | |
10,000 | 99 | 0.3 | 99 | 0.29 | |
100,000 | 99 | 0.96 | 98 | 1.06 | |
1,000,000 | 2 | 1.64 | 5 | 1.98 | |
10,000,000 | 3 | 0.24 | 8 | 0.19 | |
100,000,000 | 32 | 0.28 | 27 | 0.36 | |
total | 435 | 0.52 | 437 | 0.84 | |
BPP.75 | 100 | 100 | 0.15 | 100 | 1.58 |
1000 | 100 | 1.58 | 100 | 0.24 | |
10,000 | 95 | 5.86 | 94 | 0.97 | |
100,000 | 20 | 65.93 | 33 | 3.53 | |
1,000,000 | 58 | 68.46 | 77 | 2.05 | |
10,000,000 | 78 | 70.67 | 98 | 0.43 | |
100,000,000 | 78 | 70.33 | 100 | 0.52 | |
total | 529 | 40.28 | 602 | 1.33 | |
BPP1 | 100 | 100 | 0.42 | 100 | 1.42 |
1000 | 100 | 1.99 | 100 | 0.54 | |
10,000 | 58 | 35.13 | 65 | 3.22 | |
100,000 | 74 | 55.75 | 86 | 2.07 | |
1,000,000 | 94 | 53.24 | 100 | 0.46 | |
10,000,000 | 97 | 55.58 | 100 | 0.28 | |
100,000,000 | 96 | 54.78 | 100 | 0.20 | |
total | 619 | 36.13 | 651 | 1.17 | |
Total | 2113 | 19.38 | 2227 | 0.99 |
Class | GGA-CGT | GGA-CGT with Adaptive Strategies | p-Value | ||||
---|---|---|---|---|---|---|---|
Average | Stdev | Max | Average | Stdev | Max | ||
BPP.25 | 525.87 | 4.56 | 536 | 537.39 | 4.43 | 548 | 9.77 × |
BPP.5 | 431.55 | 3.64 | 439 | 437.81 | 4.32 | 447 | 7.43 × |
BPP.75 | 516.97 | 7.16 | 530 | 599.58 | 4.25 | 608 | 9.54 × |
BPP1 | 618.23 | 3.81 | 629 | 652.77 | 2.89 | 659 | 4.32 × |
BPP | 2092.61 | 11.25 | 2115 | 2227.55 | 8.42 | 2246 | 7.58 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amador-Larrea, S.; Quiroz-Castellanos, M.; Ramos-Figueroa, O. An Experimental Study of Strategies to Control Diversity in Grouping Mutation Operators: An Improvement to the Adaptive Mutation Operator for the GGA-CGT for the Bin Packing Problem. Math. Comput. Appl. 2025, 30, 31. https://doi.org/10.3390/mca30020031
Amador-Larrea S, Quiroz-Castellanos M, Ramos-Figueroa O. An Experimental Study of Strategies to Control Diversity in Grouping Mutation Operators: An Improvement to the Adaptive Mutation Operator for the GGA-CGT for the Bin Packing Problem. Mathematical and Computational Applications. 2025; 30(2):31. https://doi.org/10.3390/mca30020031
Chicago/Turabian StyleAmador-Larrea, Stephanie, Marcela Quiroz-Castellanos, and Octavio Ramos-Figueroa. 2025. "An Experimental Study of Strategies to Control Diversity in Grouping Mutation Operators: An Improvement to the Adaptive Mutation Operator for the GGA-CGT for the Bin Packing Problem" Mathematical and Computational Applications 30, no. 2: 31. https://doi.org/10.3390/mca30020031
APA StyleAmador-Larrea, S., Quiroz-Castellanos, M., & Ramos-Figueroa, O. (2025). An Experimental Study of Strategies to Control Diversity in Grouping Mutation Operators: An Improvement to the Adaptive Mutation Operator for the GGA-CGT for the Bin Packing Problem. Mathematical and Computational Applications, 30(2), 31. https://doi.org/10.3390/mca30020031