Design and Implementation of a Deep Learning Model and Stochastic Model for the Forecasting of the Monthly Lake Water Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Required
2.2. Deep Neural Network Time Series Forecasting Model
2.2.1. Artificial Neural Network (ANN)
2.2.2. Deep Learning (DL)
2.3. Statistical Time Series Forecasting Model
ARIMA Model
2.4. Performance Criteria
3. Results
3.1. Model Development
3.2. Results for Lake St. Clair
3.3. Results for Lake Ontario
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khatibi, R.; Ghorbani, M.A.; Naghshara, S.; Aydin, H.; Karimi, V. A framework for ‘Inclusive Multiple Modelling’ with critical views on modelling practices–Applications to modelling water levels of Caspian Sea and Lakes Urmia and Van. J. Hydrol. 2020, 587, 124923. [Google Scholar] [CrossRef]
- Yadav, B.; Eliza, K. A Hybrid Wavelet-Support Vector Machine model for Prediction of Lake water level Fluctuations Using Hydro-Meteorological Data. Measurement 2017, 103, 294–301. [Google Scholar] [CrossRef]
- Khatibi, R.; Ghorbani, M.A.; Naghipour, L.; Jothiprakash, V.; Fathima, T.A.; Fazelifard, M.H. Inter-comparison of time series models of lake levels predicted by several modeling strategies. J. Hydrol. 2014, 511, 530–545. [Google Scholar] [CrossRef]
- Zhu, S.; Lu, H.; Ptak, M.; Dai, J.; Ji, Q. Lake water-level fluctuation forecasting using machine learning models: A systematic review. Environ. Sci. Pollut. Res. 2020, 27, 44807–44819. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Hrnjica, B.; Ptak, M.; Choiński, A.; Sivakumar, B. Forecasting of water level in multiple temperate lakes using machine learning models. J. Hydrol. 2020, 585, 124819. [Google Scholar] [CrossRef]
- Kisi, O.; Shiri, J.; Nikoofar, B. Forecasting daily lake levels using artificial intelligence approaches. Comput. Geosci. 2012, 41, 169–180. [Google Scholar] [CrossRef]
- Bonakdari, H.; Ebtehaj, I.; Samui, P.; Gharabaghi, B. Lake water-level fluctuations forecasting using minimax probability machine regression, relevance vector machine, gaussian process regression, and extreme learning machine. Water Resour. Manag. 2019, 33, 3965–3984. [Google Scholar] [CrossRef]
- Nhu, V.H.; Shahabi, H.; Nohani, E.; Shirzadi, A.; Al-Ansari, N.; Bahrami, S.; Miraki, S.; Geertsema, M.; Nguyen, H. Daily Water Level Prediction of Zrebar Lake (Iran): A Comparison between M5P, Random Forest, Random Tree and Reduced Error Pruning Trees Algorithms. ISPRS Int. J. Geo-Inf. 2020, 9, 479. [Google Scholar] [CrossRef]
- Pan, M.; Zhou, H.; Cao, J.; Liu, Y.; Hao, J.; Li, S.; Chen, C. Water Level Prediction Model Based on GRU and CNN. IEEE Access 2020, 8, 60090–60100. [Google Scholar] [CrossRef]
- Choi, C.; Kim, J.; Han, H.; Han, D.; Kim, H.S. Development of Water Level Prediction Models Using Machine Learning in Wetlands: A Case Study of Upo Wetland in South Korea. Water 2020, 12, 93. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Yafouz, A.; Birima, A.H.; Kisi, O.; Huang, Y.F.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Water level prediction using various machine learning algorithms: A case study of Durian Tunggal river, Malaysia. Eng. Appl. Comput. Fluid Mech. 2022, 16, 422–440. [Google Scholar] [CrossRef]
- Atashi, V.; Gorji, H.T.; Shahabi, S.M.; Kardan, R.; Lim, Y.H. Water level forecasting using deep learning time-series analysis: A case study of red river of the north. Water 2022, 14, 1971. [Google Scholar] [CrossRef]
- Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Cremer, C.Z. Deep limitations? Examining expert disagreement over deep learning. Prog. Artif. Intell. 2021, 10, 449–464. [Google Scholar] [CrossRef]
- Picon, A.; Alvarez-Gila, A.; Irusta, U.; Echazarra, J. Why deep learning performs better than classical machine learning? Dyna Ing. E Ind. 2020, 95, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Dove-Thompson, D.; Lewis, C.; Gray, P.A.; Chu, C.; Dunlop, W.I. A Summary of the Effects of Climate Change on Ontario’s Aquatic Ecosystems. 2011. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20173382427 (accessed on 28 April 2024).
- Lee, D.H.; Moulton, R.; Hibner, B.A. Climate Change Impacts on Western Lake Erie, Detroit River, and Lake St. Clair Water Levels; Environment Canada, Atmospheric Environment Service: Toronto, ON, Canada, 1996. [Google Scholar]
- Ghorbani, M.A.; Deo, R.C.; Karimi, V.; Yaseen, Z.M.; Terzi, O. Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stoch. Environ. Res. Risk Assess. 2018, 32, 1683–1697. [Google Scholar] [CrossRef]
- Abraham, A. Artificial neural networks. In Handbook of Measuring System Design; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Tran, T.T.K.; Bateni, S.M.; Ki, S.J.; Vosoughifar, H. A review of neural networks for air temperature forecasting. Water 2021, 13, 1294. [Google Scholar] [CrossRef]
- Elsner, J.B.; Tsonis, A.A. Nonlinear prediction, chaos, and noise. Bull. Am. Meteorol. Soc. 1992, 73, 49–60. [Google Scholar] [CrossRef]
- Wu, Y.C.; Feng, J.W. Development and application of artificial neural network. Wirel. Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Zhang, G.; Patuwo, B.E.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rusk, N. Deep learning. Nat. Methods 2016, 13, 35. [Google Scholar] [CrossRef]
- Luhaniwal, V. Forward propagation in neural networks–Simplified math and code version. Towards Data Sci. 2019, 6, 112–120. [Google Scholar]
- Krogh, A. What are artificial neural networks? Nat. Biotechnol. 2008, 26, 195–197. [Google Scholar] [CrossRef]
- Biswal, A. Top 10 Deep Learning Algorithms You Should Know in 2021. 2021. Available online: https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-algorithm (accessed on 26 May 2024).
- Lai, Y.; Dzombak, D.A. Use of the autoregressive integrated moving average (ARIMA) model to forecast near-term regional temperature and precipitation. Weather Forecast. 2020, 35, 959–976. [Google Scholar] [CrossRef]
- Iwok, I.A.; Okpe, A.S. A comparative study between univariate and multivariate linear stationary time series models. Am. J. Math. Stat. 2016, 6, 203–212. [Google Scholar]
- Castán-Lascorz, M.A.; Jiménez-Herrera, P.; Troncoso, A.; Asencio-Cortés, G. A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting. Inf. Sci. 2022, 586, 611–627. [Google Scholar] [CrossRef]
- Noori, R.; Karbassi, A.R.; Moghaddamnia, A.; Han, D.; Zokaei-Ashtiani, M.H.; Farokhnia, A.; Gousheh, M.G. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401, 177–189. [Google Scholar] [CrossRef]
- Ghorbani, M.; Kahya, E.; Ruskeepää, H.; Roshni, T.; Kashani, M.H.; Karimi, V.; Arikan, B.B. Temporal connections in reconstructed monthly rainfall time series in different rainfall regimes of Turkey. Arab. J. Geosci. 2022, 15, 1015. [Google Scholar] [CrossRef]
- Zakaria, M.N.A.; Ahmed, A.N.; Malek, M.A.; Birima, A.H.; Khan, M.M.H.; Sherif, M.; Elshafie, A. Exploring machine learning algorithms for accurate water level forecasting in Muda river, Malaysia. Heliyon 2023, 9, E17689. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.; Zhang, J.; Han, H.; Shu, Z. Bayesian model averaging by combining deep learning models to improve lake water level prediction. Sci. Total Environ. 2024, 906, 167718. [Google Scholar] [CrossRef] [PubMed]
- Demir, V.; Yaseen, Z.M. Neurocomputing intelligence models for lakes water level forecasting: A comprehensive review. Neural Comput. Appl. 2023, 35, 303–343. [Google Scholar] [CrossRef]
- Wen, J.; Han, P.F.; Zhou, Z.; Wang, X.S. Lake level dynamics exploration using deep learning, artificial neural network, and multiple linear regression techniques. Environ. Earth Sci. 2019, 78, 222. [Google Scholar] [CrossRef]
- Barzegar, R.; Adamowski, J.; Quilty, J.; Taghi Aalami, M. Using a boundary-corrected wavelet transform coupled with machine learning and hybrid deep learning approaches for multi-step water level forecasting in Lakes Michigan and Ontario. In Proceedings of the 22nd EGU General Assembly, Online, 4–8 May 2020; p. 4233. [Google Scholar]
- Yue, L.; Zan, F.; Liu, X.; Yuan, Q.; Shen, H. The spatio-temporal reconstruction of lake water levels using deep learning models: A case study on Altai mountains. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4919–4940. [Google Scholar] [CrossRef]
- Ozdemir, S.; Ozkan Yildirim, S. Prediction of Water Level in Lakes by RNN-Based Deep Learning Algorithms to Preserve Sustainability in Changing Climate and Relationship to Microcystin. Sustainability 2023, 15, 16008. [Google Scholar] [CrossRef]
- Herath, M.; Jayathilaka, T.; Hoshino, Y.; Rathnayake, U. Deep machine learning-based water level prediction model for Colombo flood detention area. Appl. Sci. 2023, 13, 2194. [Google Scholar] [CrossRef]
Station | Statistical Characteristics | Water Level (m) |
---|---|---|
St. Clair | Minimum | 173.88 |
Maximum | 176.04 | |
Median | 175.04 | |
Mean | 175.03 | |
Variance | 0.16 | |
Skewness | −0.08 | |
Length | 1248 | |
Ontario | Minimum | 73.74 |
Maximum | 75.91 | |
Median | 74.75 | |
Mean | 74.77 | |
Variance | 0.12 | |
Skewness | 0.11 | |
Length | 1248 |
Lake | Scenario | Inputs | Output |
---|---|---|---|
St. Clair | M1 | WL(t) | WL(t) |
M2 | WL(t), WL(t-1) | WL(t) | |
M3 | WL(t), WL(t-1), WL(t-2) | WL(t) | |
M4 | WL(t), WL(t-1), WL(t-2), WL(t-3) | WL(t) | |
M5 | WL(t), WL(t-1), WL(t-2), WL(t-3), WL(t-4) | WL(t) | |
M6 | WL(t), WL(t-1), WL(t-2), WL(t-3), WL(t-4), WL(t-5) | WL(t) | |
Ontario | M1 | WL(t) | WL(t) |
M2 | WL(t), WL(t-1) | WL(t) | |
M3 | WL(t), WL(t-1), WL(t-2) | WL(t) | |
M4 | WL(t), WL(t-1), WL(t-2), WL(t-3) | WL(t) | |
M5 | WL(t), WL(t-1), WL(t-2), WL(t-3), WL(t-4) | WL(t) | |
M6 | WL(t), WL(t-1), WL(t-2), WL(t-3), WL(t-4), WL(t-5) | WL(t) |
Lake | Training | Testing | |||||
---|---|---|---|---|---|---|---|
Model | R | RMSE (m) | MAPE | R | RMSE (m) | MAPE | |
St. Clair | ARIMA | 0.872 | 0.4012 | 0.174 | 0.874 | 0.3755 | 0.177 |
ANN-M1 | 0.852 | 0.4137 | 0.098 | 0.861 | 0.3637 | 0.096 | |
ANN-M2 | 0.823 | 0.278 | 0.088 | 0.927 | 0.1502 | 0.087 | |
ANN-M3 | 0.864 | 0.4137 | 0.075 | 0.983 | 0.4132 | 0.079 | |
ANN-M4 | 0.813 | 0.4224 | 0.089 | 0.922 | 0.3082 | 0.082 | |
ANN-M5 | 0.94 | 0.2453 | 0.078 | 0.956 | 0.2117 | 0.066 | |
ANN-M6 | 0.673 | 0.3418 | 0.096 | 0.873 | 0.2302 | 0.094 | |
DL-M1 | 0.902 | 1.0467 | 0.095 | 0.895 | 1.1161 | 0.094 | |
DL-M2 | 0.936 | 0.3587 | 0.068 | 0.962 | 0.3209 | 0.069 | |
DL-M3 | 0.978 | 0.3137 | 0.071 | 0.988 | 0.3479 | 0.069 | |
DL-M4 | 0.99 | 0.1606 | 0.068 | 0.99 | 0.1336 | 0.067 | |
DL-M5 | 0.991 | 0.6517 | 0.086 | 0.993 | 0.611 | 0.088 | |
DL-M6 | 0.969 | 0.4541 | 0.073 | 0.951 | 0.4299 | 0.072 | |
Ontario | ARIMA | 0.874 | 0.3561 | 0.39 | 0.876 | 0.306 | 0.37 |
ANN-M1 | 0.798 | 0.2369 | 0.089 | 0.886 | 0.1555 | 0.079 | |
ANN-M2 | 0.766 | 0.2843 | 0.083 | 0.786 | 0.2683 | 0.085 | |
ANN-M3 | 0.868 | 0.1724 | 0.084 | 0.875 | 0.1612 | 0.076 | |
ANN-M4 | 0.741 | 0.2201 | 0.09 | 0.706 | 0.2313 | 0.092 | |
ANN-M5 | 0.872 | 0.1626 | 0.077 | 0.868 | 0.1652 | 0.078 | |
ANN-M6 | 0.924 | 1356 | 0.069 | 0.912 | 0.146 | 0.072 | |
DL-M1 | 0.882 | 0.1534 | 0.076 | 0.875 | 0.1419 | 0.073 | |
DL-M2 | 0.936 | 0.2347 | 0.076 | 0.934 | 0.3002 | 0.098 | |
DL-M3 | 0.928 | 0.1533 | 0.063 | 0.952 | 0.1257 | 0.057 | |
DL-M4 | 0.914 | 0.2265 | 0.069 | 0.895 | 0.274 | 0.084 | |
DL-M5 | 0.937 | 0.1395 | 0.065 | 0.943 | 0.1324 | 0.067 | |
DL-M6 | 0.896 | 0.1723 | 0.085 | 0.933 | 0.1561 | 0.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Nuaami, W.A.H.; Dawod, L.A.-j.; Kibria, B.M.G.; Ghorbani, S. Design and Implementation of a Deep Learning Model and Stochastic Model for the Forecasting of the Monthly Lake Water Level. Limnol. Rev. 2024, 24, 217-234. https://doi.org/10.3390/limnolrev24030013
Al-Nuaami WAH, Dawod LA-j, Kibria BMG, Ghorbani S. Design and Implementation of a Deep Learning Model and Stochastic Model for the Forecasting of the Monthly Lake Water Level. Limnological Review. 2024; 24(3):217-234. https://doi.org/10.3390/limnolrev24030013
Chicago/Turabian StyleAl-Nuaami, Waleed Ahmed Hassen, Lamiaa Abdul-jabbar Dawod, B. M. Golam Kibria, and Shahryar Ghorbani. 2024. "Design and Implementation of a Deep Learning Model and Stochastic Model for the Forecasting of the Monthly Lake Water Level" Limnological Review 24, no. 3: 217-234. https://doi.org/10.3390/limnolrev24030013
APA StyleAl-Nuaami, W. A. H., Dawod, L. A. -j., Kibria, B. M. G., & Ghorbani, S. (2024). Design and Implementation of a Deep Learning Model and Stochastic Model for the Forecasting of the Monthly Lake Water Level. Limnological Review, 24(3), 217-234. https://doi.org/10.3390/limnolrev24030013