Spectral Self-Compression of Chirp-Free Pulses in Anomalously Dispersive Optical Fibers
Abstract
:1. Introduction
2. Analytical Discussion of Self-SC in Anomalously Dispersive Fibers
3. Numerical Study
4. Experiment
4.1. Experimental Setup
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agrawal, G.P. Nonlinear Fiber Optics, 6th ed.; Academic Press: Cambridge, MA, USA; Elsevier Science: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Markaryan, N.L.; Muradyan, L.K.; Papazyan, T.A. Spectral compression of ultrashort laser pulses. Sov. J. Quantum Electron. 1991, 21, 783–785. [Google Scholar] [CrossRef]
- Oberthaler, M.; Hopfel, R.A. Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers. Appl. Phys. Lett. 1993, 63, 1017–1019. [Google Scholar] [CrossRef]
- Planas, S.A.; Pires Mansur, N.L.; Brito Cruz, C.H.; Fragnito, H.L. Spectral narrowing in the propagation of chirped pulses in single-mode fibers. Opt. Lett. 1993, 18, 699–701. [Google Scholar] [CrossRef]
- Cundiff, S.T.; Collings, B.C.; Boivin, L.; Nuss, M.C.; Bergman, K.; Knox, W.H.; Evangelides, S.G. Propagation of Highly Chirped Pulses in Fiber-Optic Communications Systems. J. Light. Technol. 1999, 17, 811–815. [Google Scholar] [CrossRef]
- Limpert, J.; Gabler, T.; Liem, A.; Zellmer, H.; Tünnermann, A. SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier. Appl. Phys. B 2002, 74, 191–195. [Google Scholar] [CrossRef]
- Sidorov-Biryukov, D.A.; Fernandez, A.; Zhu, L.; Pugzlys, A.; Serebryannikov, E.E.; Baltuska, A.; Zheltikov, A.M. Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers. Opt. Express 2008, 16, 2502–2507. [Google Scholar] [CrossRef]
- Andresen, E.R.; Thøgersen, J.; Keiding, S.R. Spectral compression of femtosecond pulses in photonic crystal fibers. Opt. Lett. 2005, 30, 2025–2027. [Google Scholar] [CrossRef]
- Chuang, H.P.; Huang, C.B. Wavelength-tunable spectral compression in a dispersion-increasing fiber. Opt. Lett. 2011, 36, 2848–2850. [Google Scholar] [CrossRef] [PubMed]
- Fatome, J.; Kibler, B.; Andresen, E.R.; Rigneault, H.; Finot, C. All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping. Appl. Opt. 2012, 51, 4547–4553. [Google Scholar] [CrossRef]
- Limpert, J.; Deguil-Robin, N.; Manek-Hönninger, I.; Salin, F.; Schreiber, T.; Liem, A.; Röser, E.; Zellmer, H.; Tünnermann, A.; Courjaud, A.; et al. High-power picosecond fiber amplifier based on nonlinear spectral compression. Opt. Lett. 2005, 30, 714–716. [Google Scholar] [CrossRef]
- Rusu, M.; Okhotnikov, O.G. All-fiber picosecond laser source based on nonlinear spectral compression. Appl. Phys. Lett. 2006, 89, 091118. [Google Scholar] [CrossRef]
- Bao, C.; Xiao, X.; Yang, C. Spectral compression of a dispersion managed mode-locked Tm: Fiber laser at 1.9 μm. IEEE Photon. Technol. Lett. 2015, 28, 497–500. [Google Scholar] [CrossRef]
- Nishizawa, N.; Takahashi, K.; Ozeki, Y.; Itoh, K. Wideband spectral compression of wavelength tunable ultrashort soliton pulse using comb profile fiber. Opt. Express 2010, 18, 11700–117006. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, N.; Andou, Y.; Omoda, E.; Kataura, H.; Sakakibara, Y. Characteristics and improvement of wideband wavelength-tunable narrow-linewidth source by spectral compression in quasi-dispersion-increasing comb-profile fiber. Opt. Express 2016, 24, 23403–23418. [Google Scholar] [CrossRef]
- Toneyan, H.; Zeytunyan, A.; Zadoyan, R.; Mouradian, L. Classic, all-fiber, and similaritonic techniques of spectral compression. J. Phys. Conf. Ser. 2016, 672, 012016. [Google Scholar] [CrossRef]
- Kutuzyan, A.A.; Mansuryan, T.G.; Esayan, G.L.; Akopsyan, R.S.; Muradyan, L.K. Dispersive regime of spectral compression. Quantum Electron. 2008, 38, 383–387. [Google Scholar] [CrossRef]
- Finot, C.; Boscolo, S. Design rules for nonlinear spectral compression in optical fibers. J. Opt. Soc. Am. B 2016, 33, 760–767. [Google Scholar] [CrossRef]
- Yi-Song, L.; Chen-Bin, H. Large-scale and structure-tunable laser spectral compression in an optical dispersion increasing fiber. Opt. Express 2017, 25, 18024–18030. [Google Scholar]
- Chen, R.; Shi, Z.; Chang, G. Pre-Chirp-Managed Adiabatic Soliton Compression in Pressure-Gradient Hollow-Core Fibers. Photonics 2021, 8, 357. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, T.; Li, M. Spectral compression of chirp-free optical pulses in fibers with exponentially increasing dispersion. J. Opt. Soc. Am. B 2017, 34, 9. [Google Scholar] [CrossRef]
- Szewczyk, O.; Łaszczych, Z.; Soboń, G. Spectral compression and amplification of ultrashort pulses tunable in the 1650–1900 nm wavelength range. Opt. Laser Technol. 2023, 164, 109465. [Google Scholar] [CrossRef]
- Mouradian, L.K.; Grigoryan, A.; Kutuzyan, A.; Yesayan, G.; Sukiasyan, M.; Toneyan, H.; Zeytunyan, A.; Zadoyan, R.; Barthelemy, A. Spectral Analogue of the Soliton Effect Compression: Spectral Self-Compressionl; Frontiers in Optics (FIO), OSA Technical Digest; Frontiers in Optics Laser Science: Rochester, NY, USA, 2016; p. FW3F.3. [Google Scholar]
- Grigoryan, A.P.; Kutuzyan, A.A.; Yesayan, G.L.; Mouradian, L.K. Spectral domain soliton-effect self-compression. J. Phys. Conf. Ser. 2016, 672, 12015. [Google Scholar] [CrossRef]
- Toneyan, H.; Sukiasyan, M.; Avetisyan, V.; Kutuzyan, A.; Yeremyan, A.; Mouradian, L. Solitonic Self-Spectral Compression of Noisy Supercontinuum Radiation; Frontiers in Optics 2016, OSA Technical Digest; Frontiers in Optics Laser Science: Rochester, NY, USA, 2015; p. JW4A.44. [Google Scholar]
- Akhmanov, S.A.; Vysloukh, V.A.; Chirkin, A.S. Optics of Femtosecond Laser Pulses; American Institute of Physics: College Park, MD, USA, 1992. [Google Scholar]
- Sukiasyan, M. Spectral Self-Compression of partially coherent pulses. Armen. J. Phys. 2019, 12, 113–118. [Google Scholar]
- Hardin, R.; Tappert, F. Applications of the Split-Step Fourier Method to the Numerical Solution of Nonlinear and Variable Coefficient Wave Equations. Cronicle 1973, 15, 423. [Google Scholar]
- Fisher, R.; Bischel, W. The role of linear dispersion in plane-wave self-phase modulation. Appl. Phys. Lett. 1973, 23, 661–663. [Google Scholar] [CrossRef]
- Kutuzyan, A.; Avetisyan, V.; Kalashyan, M.; Sukiasyan, M. Formation of a New Type of Self-Similar Pulses in Optical Fibers with Anomalous Dispersion; Frontiers in Optics Laser Science: Rochester, NY, USA, 2022; p. JTu4B.32. [Google Scholar]
- Gražulevičiūtė, I.; Skeivytė, M.; Keblytė, E.; Galinis, J.; Tamošauskas, G.; Dubietis, A. Supercontinuum generation in YAG and Sapphire with picosecond laser pulses. Lith. J. Phys. 2015, 55, 110–116. [Google Scholar] [CrossRef]
- Galinis, J.; Tamošauskas, G.; Gražulevičiūtė, I.; Keblytė, E.; Jukna, V.; Dubietis, A. Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses. Phys. Rev. A 2015, 92, 33857. [Google Scholar] [CrossRef]
- Dubietis, A.; Tamošauskas, G.; Šuminas, R.; Jukna, V.; Couairon, A. Ultrafast supercontinuum generation in bulk condensed media. Lith. J. Phys. 2017, 57, 113–157. [Google Scholar] [CrossRef]
- Cheng, S.; Chatterjee, G.; Tellkamp, F.; Ruehl, A.; Miller, R.J.D. Multi-octave supercontinuum generation in YAG pumped by mid-infrared, multi-picosecond pulses. Opt. Lett. 2018, 43, 4329–4332. [Google Scholar] [CrossRef]
N | SCR | Period |
---|---|---|
0.64 | 100 | 11,710 |
0.65 | 63 | 3532 |
0.66 | 44 | 1751 |
0.67 | 33.8 | 985 |
0.7 | 19 | 314 |
0.75 | 11 | 100 |
0.8 | 7.7 | 49 |
0.85 | 5.7 | 28.3 |
0.9 | 4.5 | 24.8 |
0.95 | 3.5 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukiasyan, M.; Avetisyan, V.; Kutuzyan, A. Spectral Self-Compression of Chirp-Free Pulses in Anomalously Dispersive Optical Fibers. Photonics 2023, 10, 1207. https://doi.org/10.3390/photonics10111207
Sukiasyan M, Avetisyan V, Kutuzyan A. Spectral Self-Compression of Chirp-Free Pulses in Anomalously Dispersive Optical Fibers. Photonics. 2023; 10(11):1207. https://doi.org/10.3390/photonics10111207
Chicago/Turabian StyleSukiasyan, Minas, Vardan Avetisyan, and Aghavni Kutuzyan. 2023. "Spectral Self-Compression of Chirp-Free Pulses in Anomalously Dispersive Optical Fibers" Photonics 10, no. 11: 1207. https://doi.org/10.3390/photonics10111207
APA StyleSukiasyan, M., Avetisyan, V., & Kutuzyan, A. (2023). Spectral Self-Compression of Chirp-Free Pulses in Anomalously Dispersive Optical Fibers. Photonics, 10(11), 1207. https://doi.org/10.3390/photonics10111207