Working Mechanism and Progress of Electromagnetic Metamaterial Perfect Absorber
Abstract
:1. Introduction
1.1. Development History of Metamaterials
1.2. Metamaterial Perfect Absorber and Its Research Significance
2. Perfect Absorption Mechanism
2.1. Impedance Matching
2.2. Four Theoretical Models
2.2.1. Effective Medium Model
2.2.2. Transmission Line Modelling
2.2.3. Coupled Mode Theory
2.2.4. Interference Theory
2.3. Coherent Perfect Absorption
3. Research Progress of MPA
3.1. Narrow Band Absorber
3.2. Dual-Frequency and Multi-Frequency Absorbers
3.3. Broadband Absorber
3.4. Tunable Absorber
3.4.1. Tunable Absorber Based on Photosensitive Silicon
3.4.2. Tunable Absorber Based on Graphene
3.4.3. Tunable Absorber Based on Other Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776. [Google Scholar] [CrossRef] [PubMed]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar Photonics with Metasurfaces. Science 2013, 339, 6. [Google Scholar] [CrossRef] [PubMed]
- He, J.W.; Dong, T.; Chi, B.H.; Zhang, Y. Metasurfaces for Terahertz Wavefront Modulation: A Review. J. Infrared Millim. Terahertz Waves 2020, 41, 607–631. [Google Scholar] [CrossRef]
- Veselago, V.G. The Electrodynamics of Substance with Simultaneously Negative Values of E and M. Physics-Uspekhi 1968, 10, 509. [Google Scholar] [CrossRef]
- Wei, Z.; Xiaopeng, Z. Advances in Research on Left-Handed Metamaterials. Mater. Rev. 2006, 20, 26. [Google Scholar]
- Liu, C.Q.; Zhang, S.; Wang, S.J.; Cai, Q.N.; Wang, P.; Tian, C.S.; Zhou, L.; Wu, Y.Z.; Tao, Z.S. Active Spintronic-Metasurface Terahertz Emitters with Tunable Chirality. Adv. Photonics 2021, 3, 19. [Google Scholar] [CrossRef]
- Li, X.J.; Yin, J.; Liu, J.J.; Shu, F.Z.; Lang, T.T.; Jing, X.F.; Hong, Z. Resonant Transparency of a Planar Anapole Metamaterial at Terahertz Frequencies. Photonics Res. 2021, 9, 125–130. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Chen, Y.P.; Shih, Y.H.; Chen, Y.S.; Lin, X.Y.; Liu, J.H.; Huang, C.Y. Floating Terahertz Metamaterials with Extremely Large Refractive Index Sensitivities. Photonics Res. 2021, 9, 1970–1978. [Google Scholar] [CrossRef]
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling Electromagnetic Fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed]
- Gao, E.D.; Liu, Z.M.; Li, H.J.; Xu, H.; Zhang, Z.B.; Lu, X.; Xiong, C.X.; Liu, C.; Zhang, B.H.; Zhou, F.Q. Dynamically Tunable Dual Plasmon-Induced Transparency and Absorption Based on a Single-Layer Patterned Graphene Metamaterial. Opt. Express 2019, 27, 13884–13894. [Google Scholar] [CrossRef]
- Yu, N.F.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, C.; Grbic, A. Metamaterial Huygens’ Surfaces: Tailoring Wave Fronts with Reflectionless Sheets. Phys. Rev. Lett. 2013, 110, 197401. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared Perfect Absorber and Its Application as Plasmonic Sensor. Nano Lett. 2010, 10, 2342–2348. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 4. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, R.Q.; Qin, J.; Wang, S.Y.; Han, T.C. Ultra-Broadband Wide-Angle Linear Polarization Converter Based on H-Shaped Metasurface. Opt. Express 2018, 26, 20913–20919. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, J.X.; Qiu, W.B.; Zhao, Z.Y. Investigation of Sensing Characteristic of Graphene Metamaterial Based on Fano Resonance. Laser Optoelectron. Prog. 2021, 58, 6. [Google Scholar]
- Bai, L.; Zhang, X.G.; Jiang, W.; Cui, T. Research Progress of Light-Controlled Electromagnetic Metamaterials. J. Radars 2021, 10, 240–258. [Google Scholar]
- Shaltout, A.M.; Shalaev, V.M.; Brongersma, M.L. Spatiotemporal Light Control with Active Metasurfaces. Science 2019, 364, 6591. [Google Scholar] [CrossRef] [PubMed]
- Abdulkarim, Y.I.; Alkurt, F.O.; Awl, H.N.; Muhammadsharif, F.F.; Bakir, M.; Dalgac, S.; Karaaslan, M.; Luo, H. An Ultrathin and Dual Band Metamaterial Perfect Absorber Based on Znse for the Polarization-Independent in Terahertz Range. Results Phys. 2021, 26, 11. [Google Scholar] [CrossRef]
- Le, D.T.; Tong, B.T.; Nguyen, T.K.T.; Cao, T.N.; Nguyen, H.Q.; Tran, M.C.; Truong, C.L.; Bui, X.K.; Vu, D.L.; Nguyen, T.Q.H. Polarization-Insensitive Dual-Band Terahertz Metamaterial Absorber Based on Asymmetric Arrangement of Two Rectangular-Shaped Resonators. Optik 2021, 245, 8. [Google Scholar] [CrossRef]
- Lu, T.G.; Zhang, D.W.; Qiu, P.Z.; Lian, J.Q.; Jing, M.; Yu, B.B.; Wen, J. Ultrathin Terahertz Dual-Band Perfect Metamaterial Absorber Using Asymmetric Double-Split Rings Resonator. Symmetry 2018, 10, 293. [Google Scholar] [CrossRef]
- Schalch, J.; Duan, G.W.; Zhao, X.G.; Zhang, X.; Averitt, R.D. Terahertz Metamaterial Perfect Absorber with Continuously Tunable Air Spacer Layer. Appl. Phys. Lett. 2018, 113, 5. [Google Scholar] [CrossRef]
- Vasic, B.; Gajic, R. Graphene Induced Spectral Tuning of Metamaterial Absorbers at Mid-Infrared Frequencies. Appl. Phys. Lett. 2013, 103, 4. [Google Scholar] [CrossRef]
- Ma, W.; Wen, Y.Z.; Yu, X.M. Broadband Metamaterial Absorber at Mid-Infrared Using Multiplexed Cross Resonators. Opt. Express 2013, 21, 30724–30730. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.R.; Zhao, X.P.; Gong, B.Y.; Liu, L.H.; Su, B. Optical Metamaterial Absorber Based on Leaf-Shaped Cells. Appl. Phys. A-Mater. Sci. Process 2011, 102, 147–151. [Google Scholar] [CrossRef]
- Zhu, W.R.; Zhao, X.P. Metamaterial Absorber with Dendritic Cells at Infrared Frequencies. J. Opt. Soc. Am. B-Opt. Phys. 2009, 26, 2382–2385. [Google Scholar] [CrossRef]
- Li, M.L.; Muneer, B.; Yi, Z.X.; Zhu, Q. A Broadband Compatible Multispectral Metamaterial Absorber for Visible, near-Infrared, and Microwave Bands. Adv. Opt. Mater. 2018, 6, 9. [Google Scholar] [CrossRef]
- Teperik, T.V.; de Abajo, F.J.G.; Borisov, A.G.; Abdelsalam, M.; Bartlett, P.N.; Sugawara, Y.; Baumberg, J.J. Omnidirectional Absorption in Nanostructured Metal Surfaces. Nat. Photonics 2008, 2, 299–301. [Google Scholar] [CrossRef]
- Feng, R.; Ding, W.Q.; Liu, L.H.; Chen, L.X.; Qiu, J.; Chen, G.Q. Dual-Band Infrared Perfect Absorber Based on Asymmetric T-Shaped Plasmonic Array. Opt. Express 2014, 22, A335–A343. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, E.H. Analysis of Optical Impedance Matching and Polarization Matching for Integration of Surface Plasmon Polariton Waveguides and Dielectric Waveguides. J. Korean Phys. Soc. 2010, 57, 1737–1742. [Google Scholar] [CrossRef]
- Hedayati, M.K.; Zillohu, A.U.; Strunskus, T.; Faupel, F.; Elbahri, M. Plasmonic Tunable Metamaterial Absorber as Ultraviolet Protection Film. Appl. Phys. Lett. 2014, 104, 5. [Google Scholar] [CrossRef]
- Mattiucci, N.; Bloemer, M.J.; Akozbek, N.; D’Aguanno, G. Impedance Matched Thin Metamaterials Make Metals Absorbing. Sci. Rep. 2013, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Duan, G.W.; Schalch, J.; Zhao, X.G.; Li, A.B.; Chen, C.X.; Averitt, R.D.; Zhang, X. A Survey of Theoretical Models for Terahertz Electromagnetic Metamaterial Absorbers. Sens. Actuator A-Phys. 2019, 287, 21–28. [Google Scholar] [CrossRef]
- Ghosh, S.; Srivastava, K.V. An Equivalent Circuit Model of Fss-Based Metamaterial Absorber Using Coupled Line Theory. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 511–514. [Google Scholar] [CrossRef]
- Ming, X.S.; Liu, X.Y.; Sun, L.Q.; Padilla, W.J. Degenerate Critical Coupling in All-Dielectric Metasurface Absorbers. Opt. Express 2017, 25, 24658–24669. [Google Scholar] [CrossRef]
- Rothenberg, J.M.; Chen, C.P.; Ackert, J.J.; Dadap, J.I.; Knights, A.P.; Bergman, K.; Osgood, R.M.; Grote, R.R. Experimental Demonstration of Coherent Perfect Absorption in a Silicon Photonic Racetrack Resonator. Opt. Lett. 2016, 41, 2537–2540. [Google Scholar] [CrossRef]
- Dutta-Gupta, S.; Martin, O.J.F.; Gupta, S.D.; Agarwal, G.S. Controllable Coherent Perfect Absorption in a Composite Film. Opt. Express 2012, 20, 1330–1336. [Google Scholar] [CrossRef]
- Luo, X.; Cheng, Z.Q.; Zhai, X.; Liu, Z.M.; Li, S.Q.; Liu, J.P.; Wang, L.L.; Lin, Q.; Zhou, Y.H. A Tunable Dual-Band and Polarization-Insensitive Coherent Perfect Absorber Based on Double-Layers Graphene Hybrid Waveguide. Nanoscale Res. Lett. 2019, 14, 8. [Google Scholar] [CrossRef]
- Tao, H.; Landy, N.I.; Bingham, C.M.; Zhang, X.; Averitt, R.D.; Padilla, W.J. A Metamaterial Absorber for the Terahertz Regime: Design, Fabrication and Characterization. Opt. Express 2008, 16, 7181–7188. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.Q.; Jin, Y.; He, S.L. Omnidirectional, Polarization-Insensitive and Broadband Thin Absorber in the Terahertz Regime. J. Opt. Soc. Am. B-Opt. Phys. 2010, 27, 498–504. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Awl, H.N.; Alkurt, F.O.; Muhammadsharif, F.F.; Saeed, S.R.; Karaaslan, M.; Bakir, M.; Luo, H. A Thermally Stable and Polarization Insensitive Square-Shaped Water Metamaterial with Ultra-Broadband Absorption. J. Mater. Res. Technol.-JMRT 2021, 13, 1150–1158. [Google Scholar] [CrossRef]
- Astorino, M.D.; Frezza, F.; Tedeschi, N. Ultra-Thin Narrow-Band, Complementary Narrow-Band, and Dual-Band Metamaterial Absorbers for Applications in the Thz Regime. J. Appl. Phys. 2017, 121, 10. [Google Scholar] [CrossRef]
- Cheng, R.J.; Xu, L.; Yu, X.; Zou, L.E.; Shen, Y.; Deng, X.H. High-Sensitivity Biosensor for Identification of Protein Based on Terahertz Fano Resonance Metasurfaces. Opt. Commun. 2020, 473, 4. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Cao, T. Design of Terahertz Ultra-High Sensitivity Biosensor Based on Flexible Metamaterial. Electron. Compon. Mater. 2021, 40, 882–887. [Google Scholar]
- Fan, K.B.; Suen, J.Y.; Liu, X.Y.; Padilla, W.J. All-Dielectric Metasurface Absorbers for Uncooled Terahertz Imaging. Optica 2017, 4, 601–604. [Google Scholar] [CrossRef]
- Liu, X.Y.; Fan, K.B.; Shadrivov, I.V.; Padilla, W.J. Experimental Realization of a Terahertz All-Dielectric Metasurface Absorber. Opt. Express 2017, 25, 191–201. [Google Scholar] [CrossRef]
- Wen, Q.Y.; Zhang, H.W.; Xie, Y.S.; Yang, Q.H.; Liu, Y.L. Dual Band Terahertz Metamaterial Absorber: Design, Fabrication, and Characterization. Appl. Phys. Lett. 2009, 95, 3. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Q.; Grant, J.; Saha, S.C.; Khalid, A.; Cumming, D.R.S. A Terahertz Polarization Insensitive Dual Band Metamaterial Absorber. Opt. Lett. 2011, 36, 945–947. [Google Scholar] [CrossRef]
- Shan, Y.; Chen, L.; Shi, C.; Cheng, Z.X.; Zang, X.F.; Xu, B.Q.; Zhu, Y.M. Ultrathin Flexible Dual Band Terahertz Absorber. Opt. Commun. 2015, 350, 63–70. [Google Scholar] [CrossRef]
- Xie, W.L.; Sun, P.; Wang, J.; Feng, H.; Luo, Q.P.; Xie, Q.; Guo, L.H.; Zhang, Z.X.; Sun, J.F.; Zhao, Q.; et al. Polarization-Independent Dual Narrow-Band Perfect Metamaterial Absorber for Optical Communication. Microw. Opt. Technol. Lett. 2022, 64, 1310–1316. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, D.Y.; Cui, Z.J.; Hou, L.; Lin, L.; Qu, F.F.; Liu, X.X.; Nie, P.C. All-Dielectric Terahertz Plasmonic Metamaterial Absorbers and High-Sensitivity Sensing. ACS Omega 2019, 4, 18645–18652. [Google Scholar] [CrossRef]
- Shen, X.P.; Yang, Y.; Zang, Y.Z.; Gu, J.Q.; Han, J.G.; Zhang, W.L.; Cui, T.J. Triple-Band Terahertz Metamaterial Absorber: Design, Experiment, and Physical Interpretation. Appl. Phys. Lett. 2012, 101, 4. [Google Scholar] [CrossRef]
- Wang, B.X.; Wang, G.Z. Two Compact SRR Resonators Enabling Five-Band Perfect Absorption. Mater. Lett. 2016, 180, 317–321. [Google Scholar] [CrossRef]
- Huang, L.; Chowdhury, D.R.; Ramani, S.; Reiten, M.T.; Luo, S.N.; Taylor, A.J.; Chen, H.T. Experimental Demonstration of Terahertz Metamaterial Absorbers with a Broad and Flat High Absorption Band. Opt. Lett. 2012, 37, 154–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, H.; Li, X.M.; Wang, M.; Xia, F.; Zhang, K.; Kong, W.J.; Dong, L.F.; Yun, M.J. Ultrabroadband Metamaterial Absorbers from Ultraviolet to near-Infrared Based on Multiple Resonances for Harvesting Solar Energy. Opt. Express 2021, 29, 6000–6010. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.T.; Chen, J.; Jiang, X.P.; He, J.; Jing, Q.; Yang, J.B. Full Spectrum Ultra-Wideband Absorber with Stacked Round Hole Disks. Optik 2022, 249, 9. [Google Scholar] [CrossRef]
- Huang, Y.W.; Kaj, K.; Chen, C.X.; Yang, Z.W.; Ul Haque, S.R.; Zhang, Y.; Zhao, X.G.; Averitt, R.D.; Zhang, X. Broadband Terahertz Silicon Membrane Metasurface Absorber. ACS Photonics 2022, 9, 1150–1156. [Google Scholar] [CrossRef]
- Xu, Z.C.; Gao, R.M.; Ding, C.F.; Wu, L.; Zhang, Y.T.; Yao, J.Q. Photoexcited Broadband Blueshift Tunable Perfect Terahertz Metamaterial Absorber. Opt. Mater. 2015, 42, 148–151. [Google Scholar] [CrossRef]
- Zhao, X.G.; Wang, Y.; Schalch, J.; Duan, G.W.; Crernin, K.; Zhang, J.D.; Chen, C.X.; Averitt, R.D.; Zhang, X. Optically Modulated Ultra-Broadband All-Silicon Metamaterial Terahertz Absorbers. ACS Photonics 2019, 6, 830–837. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, L.S.; Cui, Z.J.; Zhang, X.J.; Zhang, X.; Zhu, Y.Q.; Zhang, K. Optically Tunable Single Narrow Band All-Dielectric Terahertz Metamaterials Absorber. AIP Adv. 2020, 10, 7. [Google Scholar] [CrossRef]
- Lan, J.X.; Zhang, R.X.; Bai, H.; Zhang, C.D.; Zhang, X.; Hu, W.; Wang, L.; Lu, Y.Q. Tunable Broadband Terahertz Absorber Based on Laser-Induced Graphene. Chin. Opt. Lett. 2022, 20, 4. [Google Scholar] [CrossRef]
- Sun, P.; You, C.L.; Mahigir, A.; Liu, T.T.; Xia, F.; Kong, W.J.; Veronis, G.; Dowling, J.P.; Dong, L.F.; Yun, M.J. Graphene-Based Dual-Band Independently Tunable Infrared Absorber. Nanoscale 2018, 10, 15564–15570. [Google Scholar] [CrossRef]
- Wu, D.; Wang, M.; Feng, H.; Xu, Z.X.; Liu, Y.P.; Xia, F.; Zhang, K.; Kong, W.J.; Dong, L.F.; Yun, M.J. Independently Tunable Perfect Absorber Based on the Plasmonic Properties in Double-Layer Graphene. Carbon 2019, 155, 618–623. [Google Scholar] [CrossRef]
- Feng, H.; Xu, Z.X.; Li, K.; Wang, M.; Xie, W.L.; Luo, Q.P.; Chen, B.Y.; Kong, W.J.; Yun, M.J. Tunable Polarization-Independent and Angle-Insensitive Broadband Terahertz Absorber with Graphene Metamaterials. Opt. Express 2021, 29, 7158–7167. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Xie, Q.; Guo, L.H.; Su, C.X.; Wang, M.; Xia, F.; Sun, J.F.; Li, K.; Feng, H.; Yun, M.J. Dual-Controlled Tunable Dual-Band and Ultra-Broadband Coherent Perfect Absorber in the Thz Range. Opt. Express 2022, 30, 30832–30844. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; He, W.; Yang, F.; Ran, J.; Yang, Q.; Xie, S.Y. Thermally Tunable Metamaterial Absorber Based on Strontium Titanate in the Terahertz Regime. Opt. Mater. Express 2019, 9, 1377–1385. [Google Scholar] [CrossRef]
- Shrekenhamer, D.; Chen, W.C.; Padilla, W.J. Liquid Crystal Tunable Metamaterial Absorber. Phys. Rev. Lett. 2013, 110, 177403. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Dong, H.X.; Mou, N.L.; Li, H.N.; Yao, X.; Zhang, L. Tunable and Transparent Broadband Metamaterial Absorber with Water-Based Substrate for Optical Window Applications. Nanoscale 2021, 13, 7831–7837. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xia, F.; Wang, M.; Liang, J.; Yun, M. Working Mechanism and Progress of Electromagnetic Metamaterial Perfect Absorber. Photonics 2023, 10, 205. https://doi.org/10.3390/photonics10020205
Liu X, Xia F, Wang M, Liang J, Yun M. Working Mechanism and Progress of Electromagnetic Metamaterial Perfect Absorber. Photonics. 2023; 10(2):205. https://doi.org/10.3390/photonics10020205
Chicago/Turabian StyleLiu, Xiajun, Feng Xia, Mei Wang, Jian Liang, and Maojin Yun. 2023. "Working Mechanism and Progress of Electromagnetic Metamaterial Perfect Absorber" Photonics 10, no. 2: 205. https://doi.org/10.3390/photonics10020205
APA StyleLiu, X., Xia, F., Wang, M., Liang, J., & Yun, M. (2023). Working Mechanism and Progress of Electromagnetic Metamaterial Perfect Absorber. Photonics, 10(2), 205. https://doi.org/10.3390/photonics10020205