Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System
Abstract
1. Introduction
2. System Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Tan, X. Unsupervised feature learning with c-SVDDNet. Pattern Recognit. 2016, 60, 473–485. [Google Scholar] [CrossRef]
- Elyan, E.; Vuttipittayamongkol, P.; Johnston, P.; Martin, K.; McPherson, K.; Moreno-Garcia, C.F.; Jayne, C.; Sarker, M.d.M.K. Computer vision and machine learning for medical image analysis: Recent advances, challenges, and way forward. Art. Int. Surg. 2022, 2, 24–45. [Google Scholar] [CrossRef]
- Ahonen, T.; Hadid, A.; Pietikainen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, K.; Notomi, M.; Naruse, M.; Inoue, K.; Kawakami, S.; Uchida, A. Novel frontier of photonics for data processing—Photonic accelerator. APL Photonics 2019, 4, 090901. [Google Scholar] [CrossRef]
- Tanaka, G.; Yamane, T.; Heroux, J.B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 15, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H. The ‘Echo State’ Approach to Analysing and Training Recurrent Neural Networks; GMD Report 148; German National Research Institute for Computer Science: Darmstadt, Germany, 2001. [Google Scholar]
- Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable States: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef] [PubMed]
- Vandoorne, K.; Mechet, P.; Vaerenbergh, T.; Fiers, M.; Morthier, G.; Verstraeten, D.; Schrauwen, B.; Dambre, J.; Bienstman, P. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 2014, 5, 3541. [Google Scholar] [CrossRef]
- Hon, K.; Kuwabiraki, Y.; Goto, M.; Nakatani, R.; Suzuki, Y.; Nomura, H. Numerical simulation of artificial spin ice for reservoir computing. Appl. Phys. Express 2021, 14, 033001. [Google Scholar] [CrossRef]
- Appeltant, L.; Soriano, M.; Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I. Information processing using a single dynamical node as complex system. Nat. Commun. 2011, 2, 468. [Google Scholar] [CrossRef]
- Soriano, M.; Ortin, S.; Keuninckx, L.; Appeltant, L.; Danckaert, J.; Pesquera, L.; Sande, G. Delay-based reservoir computing: Noise effects in a combined analog and digital implementation. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 388–393. [Google Scholar] [CrossRef]
- Larger, L.; Soriano, M.; Brunner, D.; Appeltant, L.; Gutierrez, J.; Pesquera, L.; Mirasso, R.; Fischer, I. Photonic information processing beyond Turing: An optoelectronic implementation of reservoir computing. Opt. Express 2012, 20, 3241–3249. [Google Scholar] [CrossRef] [PubMed]
- Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S. Optoelectronic reservoir computing. Sci. Rep. 2012, 2, 287. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, L.; Ke, J.; Yang, Z.; Yang, Y.; Huang, L.; Zhuge, Q.; Hu, W. Reservoir computing system with double optoelectronic feedback loops. Opt. Express 2019, 27, 27431–27440. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Zhao, Q.; Yin, H. Efficient optoelectronic reservoir computing with three-route input based on optical delay lines. Appl. Opt. 2019, 58, 4111–4117. [Google Scholar] [CrossRef] [PubMed]
- Duport, F.; Schneider, B.; Smerieri, A.; Haelterman, M.; Massar, S. All-optical reservoir computing. Opt. Express 2012, 20, 22783–22795. [Google Scholar] [CrossRef]
- Hou, Y.; Xia, G.; Yang, W.; Wang, D.; Jayaprasath, E.; Jiang, Z.; Hu, C.; Wu, M. Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection. Opt. Express 2018, 26, 10211–10219. [Google Scholar] [CrossRef]
- Yue, D.; Wu, Z.; Hou, Y.; Cui, B.; Jin, Y.; Dai, M.; Xia, G. Performance optimization research of reservoir computing system based on an optical feedback semiconductor laser under electrical information injection. Opt. Express 2019, 27, 19931–19939. [Google Scholar] [CrossRef]
- Guo, X.; Xiang, S.; Qu, Y.; Han, Y.; Wen, A. Enhanced prediction performance of a neuromorphic reservoir computing system using a semiconductor nanolaser with double phase conjugate feedbacks. J. Light. Technol. 2021, 39, 129–135. [Google Scholar] [CrossRef]
- Brunner, D.; Soriano, M.C.; Mirasso, C.R.; Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 2013, 4, 1364. [Google Scholar] [CrossRef]
- Larger, L.; Baylón-Fuentes, A.; Martinenghi, R.; Udaltsov, V.S.; Chembo, Y.K.; Jacquot, M. High-speed photonic reservoir computing using a time-delay-based architecture: Million words per sercond classification. Phys. Rev. X 2017, 7, 011015. [Google Scholar] [CrossRef]
- Zhong, D.Z.; Yang, H.; Xi, J.T.; Zeng, N.; Xu, Z.; Deng, F.Q. Predictive learning of multi-channel isochronal chaotic synchronization by utilizing parallel optical reservoir computers based on three laterally coupled semiconductor lasers with delay-time feedback. Opt. Express 2021, 29, 5279–5294. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.Y.; Chembo, Y.K. Classification of IO-modulated signals based on reservoir computing with narrowband optoelectronic oscillators. IEEE J. Quantum Electron. 2021, 57, 5000408. [Google Scholar] [CrossRef]
- Han, M.Y.; Wang, M.G.; Fan, Y.C.; Cai, S.Y.; Guo, Y.X.; Zhang, N.H.; Schatz, R.; Popov, S.; Ozolins, O.; Pang, X.D. Simultaneous modulation format identification and OSNR monitoring based on optoelectronic reservoir computing. Opt. Express 2022, 30, 47515–47527. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhao, Q.; Yin, H.; Yue, H. Handwritten numeral recognition utilizing reservoir computing subject to optoelectronic feedback. In Proceedings of the International Conference on Natural Computation (ICNC), Zhangjiajie, China, 15–17 August 2015. [Google Scholar]
- Wan, L.; Zeiler, M.; Zhang, S.; Cun, Y.; Fergus, R. Regularization of neural networks using dropconnect. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Antonik, P.; Marsal, N.; Rontani, D. Large-scale spatiotemporal photonic reservoir computer for image classification. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 7700812. [Google Scholar] [CrossRef]
- Gardner, S.; Haider, M.; Moradi, L.; Vantsevich, V. A modified echo state network for time independent image classification. In Proceedings of the IEEE International Midwest Symposium on Circuits and Systems, East Lansing, MI, USA, 9–11 August 2021. [Google Scholar]
- Murphy, T.E.; Cohen, A.B.; Ravoori, B.; Schmitt, K.R.B.; Setty, A.V.; Sorrentino, F.; Williams, C.R.S.; Ott, E.; Roy, R. Complex dynamics and synchronization of delayed-feedback nonlinear oscillators. Phil. Trans. R. Soc. 2010, 368, 343–366. [Google Scholar] [CrossRef]
- Larger, L.; Dudley, J. Nonlinear dynamics optoelectronic chaos. Nature 2010, 465, 41–42. [Google Scholar] [CrossRef]
- Cohen, A.; Ravoori, B.; Murphy, T.; Roy, R. Using synchronization for prediction of high-dimensional chaotic dynamics. Phys. Rev. Lett. 2008, 101, 154102. [Google Scholar] [CrossRef]
- Argyris, A.; Syvridis, D.; Larger, L.; Annovazzi-Lodi, V.; Colet, P.; Fischer, I.; Garcia-Ojalvo, J.; Mirasso, C.R.; Pesquera, L.; Shore, K.A. Chaos-based communications at high bit rates using commercial fiber-optic links. Nature 2005, 438, 343–346. [Google Scholar] [CrossRef]
- Tezuka, M.; Kanno, K.; Bunsen, M. Reservoir computing with a slowly modulated mask signal for preprocessing using a mutually coupled optoelectronic system. Jpn. J. Appl. Phys. 2016, 55, 08RE06. [Google Scholar] [CrossRef]
- Antonik, P.; Duport, F.; Hermans, M.; Smerieri, A.; Haelterman, M.; Massar, S. Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2686–2698. [Google Scholar] [CrossRef]
- Kussul, E.; Baidyk, T. Improved method of handwritten digit recognition tested on MNIST database. Image Vis. Comput. 2004, 22, 971–981. [Google Scholar] [CrossRef]
- Chao, D.; Cai, F.; Mohammed, A.Z.; Wen, M.; Seung, H.L.; Wei, D.L. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 2017, 8, 2204. [Google Scholar]
- Jain, A.K.; Farrokhnia, F. Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 1991, 24, 1167–1186. [Google Scholar] [CrossRef]
- Vinckier, Q.; Duport, F.; Smerieri, A.; Vandoorne, K.; Bienstman, P.; Haelterman, M.; Massar, S. High performance photonic reservoir computer based on a coherently driven passive cavity. Optica 2015, 2, 438–446. [Google Scholar] [CrossRef]
- Yue, D.Z.; Hou, Y.S.; Wu, Z.M.; Hu, C.X.; Xiao, Z.Z.; Xia, G.Q. Experimental investigation of an Optical reservoir computing system based on two parallel time-delay reservoirs. IEEE Photonics J. 2021, 13, 8500111. [Google Scholar] [CrossRef]
- Sugano, C.; Kanno, K.; Uchida, A. Reservoir computing using multiple lasers with feedback on a photonic integrated circuit. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1500409. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, D.; Hou, Y.; Hu, C.; Zang, C.; Kou, Y. Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System. Photonics 2023, 10, 236. https://doi.org/10.3390/photonics10030236
Yue D, Hou Y, Hu C, Zang C, Kou Y. Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System. Photonics. 2023; 10(3):236. https://doi.org/10.3390/photonics10030236
Chicago/Turabian StyleYue, Dianzuo, Yushuang Hou, Chunxia Hu, Cunru Zang, and Yingzhe Kou. 2023. "Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System" Photonics 10, no. 3: 236. https://doi.org/10.3390/photonics10030236
APA StyleYue, D., Hou, Y., Hu, C., Zang, C., & Kou, Y. (2023). Handwritten Digits Recognition Based on a Parallel Optoelectronic Time-Delay Reservoir Computing System. Photonics, 10(3), 236. https://doi.org/10.3390/photonics10030236