Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide Saturable Absorber
Abstract
1. Introduction
2. Preparation and Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, H.; Muhammad, F.D.; Pua, C.H.; Thambiratnam, K. Dual-Wavelength Fiber Lasers for the Optical Generation of Microwave and Terahertz Radiation. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 166–173. [Google Scholar] [CrossRef][Green Version]
- Hu, P.; Mao, J.; Nie, H.; Wang, R.; Zhang, B.; Li, T.; He, J.; Yang, K. Highly Stable Passively Q-Switched Erbium-Doped All-Fiber Laser Based on Niobium Diselenide Saturable Absorber. Molecules 2021, 26, 4303. [Google Scholar] [CrossRef]
- Zheng, J.-C.; Yang, S.; Zhu, Z.-W.; Lau, K.-Y.; Li, L. 72-fs Er-doped Mamyshev Oscillator. J. Light. Technol. 2021, 40, 2123–2127. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, D.; Wu, X.; Zhang, H.; Lu, C.; Tam, H.Y. Observation of dip-type sidebands in a soliton fiber laser. Opt. Commun. 2010, 283, 340–343. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Q.-Y.; Zhu, Z.-W.; Qi, Y.-Y.; Yin, P.; Ge, Y.-Q.; Li, L.; Jin, L.; Zhang, L.; Zhang, H. Recent advances and challenges on dark solitons in fiber lasers. Opt. Laser Technol. 2022, 152, 108116. [Google Scholar] [CrossRef]
- Yang, S.; Li, F.; Gong, M.-M.; Zhang, L.; Zhu, Z.-W.; Shen, H.-B.; Chen, S.-C. Generation of Q-switched and mode-locked pulses based on PbS/CdS saturable absorbers in an Er-doped fiber laser. J. Mater. Chem. C 2022, 10, 5956–5961. [Google Scholar] [CrossRef]
- Gomes, L.; Orsila, L.; Jouhti, T.; Okhotnikov, O. Picosecond SESAM-Based Ytterbium Mode-Locked Fiber Lasers. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 129–136. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.B.; Tan, Y.W.; Stormer, H.L.; Kim, P.H. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef][Green Version]
- Mak, K.F.; Lee, C.G.; Hone, J.; Shan, J.; Heinz, T.J. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef][Green Version]
- Qi, Y.; Yang, S.; Wang, J.; Li, L.; Bai, Z.; Wang, Y.; Lv, Z. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers. Mater. Today Phys. 2022, 23, 100622. [Google Scholar] [CrossRef]
- Lu, S.; Wen, S.; Du, L.; Kang, Z.; Li, J.; Huang, B.; Jiang, G.; Miao, L.; Qin, G.; Zhao, C. Stable Dissipative Soliton Generation From Yb-Doped Fiber Laser Modulated via Evanescent Field Interaction With Gold Nanorods. IEEE Photon. J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, D.; Knize, R.J.; Zhao, L.; Bao, Q.; Loh, K.P. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett. 2010, 96, 111112. [Google Scholar] [CrossRef][Green Version]
- Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photon 2010, 4, 611–622. [Google Scholar] [CrossRef][Green Version]
- Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458. [Google Scholar] [CrossRef][Green Version]
- Sotor, J.; Sobon, G.; Kowalczyk, M.; Macherzynski, W.; Paletko, P.; Abramski, K.M. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett. 2015, 40, 3885–3888. [Google Scholar] [CrossRef]
- Zhao, C.; Zou, Y.; Chen, Y.; Wang, Z.; Lu, S.; Zhang, H.; Wen, S.; Tang, D. Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi_2Se_3 as a mode locker. Opt. Express 2012, 20, 27888–27895. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, X.-W.; Liu, M.; Zhao, N.; Luo, A.-P.; Luo, Z.-C.; Xu, W.-C.; Zhang, H.; Zhao, C.-J.; Wen, S.-C. Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express 2014, 22, 6868–6873. [Google Scholar] [CrossRef][Green Version]
- Dong, Y.C.; Chertopalov, S.; Maleski, K.; Anasori, B.; Hu, L.; Bhattacharya, S.; Rao, A.M.; Gogotsi, Y.; Mochalin, V.N.; Podila, R. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 2018, 30, 1705714. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, X.; Chen, S.; Jiang, X.; Hu, Y.; Jiang, Q.; Wu, L.; Li, J.; Zheng, Z.; Zhang, M.; et al. MXene-based saturable absorber for femtosecond mode-locked fiber lasers. Opt. Express 2019, 27, 10159–10170. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.; Jiang, G.; Xu, C.; Zhao, C.; Xiang, Y.; Chen, Y.; Wen, S.; Zhang, H. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 2014, 4, srep06346. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Li, H.; Lan, C.; Li, C.; Zhang, X.; Zhang, S.; Liu, Y. Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express 2014, 22, 17341–17348. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Woodward, R.I.; Howe, R.C.T.; Runcorn, T.H.; Hu, G.; Torrisi, F.; Kelleher, E.J.R.; Hasan, T. Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er-and Tm-doped fiber lasers. Opt. Express 2015, 23, 20051. [Google Scholar] [CrossRef][Green Version]
- Feldman, Y.; Wasserman, E.; Srolovitz, D.J.; Tenne, R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 1995, 267, 222. [Google Scholar] [CrossRef]
- Mao, D.; Du, B.; Yang, D.; Zhang, S.; Wang, Y.; Zhang, W.; She, X.; Cheng, H.; Zeng, H.; Zhao, J. Nonlinear Saturable Absorption of Liquid-Exfoliated Molybdenum/Tungsten Ditelluride Nanosheets. Small 2016, 12, 1489–1497. [Google Scholar] [CrossRef]
- Woodward, R.I.; Kelleher, E.J.R. 2D Saturable Absorbers for Fibre Lasers. Appl. Sci. 2015, 5, 1440–1456. [Google Scholar] [CrossRef][Green Version]
- Yang, H.; Wang, Y.; Tiu, Z.C.; Tan, S.J.; Yuan, L.; Zhang, H. All-Optical Modulation Technology Based on 2D Layered Materials. Micromachines 2022, 13, 92. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, D.; Xu, B.; Xu, H.; Cai, Z.; Peng, J.; Weng, J.; Xu, S.; Zhu, C.; Wang, F.; et al. Two-dimensional material-based saturable absorbers: Towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale 2016, 8, 1066–1072. [Google Scholar] [CrossRef][Green Version]
- Navarro-Moratalla, E.; Island, J.O.; Mañas-Valero, S.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A.; Quereda, J.; Rubio-Bollinger, G.; Chirolli, L.; Silva-Guillén, J.A.; Agraït, N.; et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 2016, 7, 11043. [Google Scholar] [CrossRef][Green Version]
- Zhao, Q.Y.; Guo, Y.H.; Zhou, Y.X.; Xu, X.; Ren, Z.; Bai, J.; Xu, X. Flexible and anisotropic properties of monolayer MX2 (M = Tc and Re; X = S, Se). J. Phys. Chem. C 2017, 121, 23744. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, F.; Lai, J.; Chen, H.; Zhang, M.; Zhang, J.; Wang, J.; He, T.; Zhang, B.; Yuan, J.; et al. Hafnium Sulfide Nanosheets for Ultrafast Photonic Device. Adv. Opt. Mater. 2019, 7, 1801303. [Google Scholar] [CrossRef]
- Bachmann, R.; Kirsch, H.; Geballe, T. Optical properties and superconductivity of NbSe2. Solid State Commun. 1971, 9, 57–60. [Google Scholar] [CrossRef]
- Huang, Y.H.; Chen, R.S.; Zhang, J.R. Electronic transport in NbSe2two-dimensional nanostructures: Semiconducting characteristics and photoconductivity. Nanoscale 2015, 7, 18964–18970. [Google Scholar] [CrossRef] [PubMed]
- Sohn, E.; Xi, X.; He, W.-Y.; Jiang, S.; Wang, Z.; Kang, K.; Park, J.-H.; Berger, H.; Forró, L.; Law, K.T.; et al. An unusual continuous paramagnetic-limited superconducting phase transition in 2D NbSe 2. Nat. Mater. 2018, 17, 504–508. [Google Scholar] [CrossRef][Green Version]
- Shi, Y.; Long, H.; Liu, S.; Tsang, Y.H.; Wen, Q. Ultrasmall 2D NbSe2 based quantum dots used for low threshold ultrafast lasers. J. Mater. Chem. C 2018, 6, 12638–12642. [Google Scholar] [CrossRef]
- Chen, L.; Du, L.; Li, J.; Yang, L.; Yi, Q.; Zhao, C. Dissipative Soliton Generation From Yb-Doped Fiber Laser Modulated by Mechanically Exfoliated NbSe2. Front. Phys. 2020, 8, 320. [Google Scholar] [CrossRef]
- Yang, H. Niobium diselenide nanosheets for a vector soliton fiber laser. J. Mater. Chem. C 2020, 8, 14954–14958. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, Q.; Zhang, B.; Gao, Z.; Yang, S.; Li, L. Numerical analysis of hybrid mode-locking stability in a Ho-doped fiber laser. Opt. Express 2023, 31, 1141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The staements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Zhang, L.; Xiao, X.; Li, X.; Yin, Z.; Ning, H.; Zhang, X.; Zhang, X. Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide Saturable Absorber. Photonics 2023, 10, 610. https://doi.org/10.3390/photonics10060610
Guo W, Zhang L, Xiao X, Li X, Yin Z, Ning H, Zhang X, Zhang X. Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide Saturable Absorber. Photonics. 2023; 10(6):610. https://doi.org/10.3390/photonics10060610
Chicago/Turabian StyleGuo, Weiqin, Ling Zhang, Xiaosheng Xiao, Xingxing Li, Zhigang Yin, Hui Ning, Xin Zhang, and Xingwang Zhang. 2023. "Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide Saturable Absorber" Photonics 10, no. 6: 610. https://doi.org/10.3390/photonics10060610
APA StyleGuo, W., Zhang, L., Xiao, X., Li, X., Yin, Z., Ning, H., Zhang, X., & Zhang, X. (2023). Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide Saturable Absorber. Photonics, 10(6), 610. https://doi.org/10.3390/photonics10060610