A Method for Obtaining Optical Properties of Two-Layer Tissue such as Thin-Skinned Fruits by Using Spatial Frequency Domain Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory and Model
2.1.1. Extraction of Optical Properties of Single-Layer Tissues
2.1.2. Extraction of Optical Properties of Two-Layer Tissues
2.2. Monte Carlo Simulation Experiment
2.3. Phantom Experiment
2.3.1. Single-Layer Phantoms’ Preparation
2.3.2. Two-Layer Phantoms Preparation
2.4. Fruit Sample Experiment
2.5. Instruments of Experiment
3. Results
3.1. Monte Carlo Simulation Results
3.2. Phantom Experimental Results
3.3. Fruit Sample Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cen, H.; Lu, R.; Mendoza, F.; Beaudry, R.M. Relationship of the Optical Absorption and Scattering Properties with Mechanical and Structural Properties of Apple Tissue. Postharvest Biol. Technol. 2013, 85, 30–38. [Google Scholar] [CrossRef]
- Hasanzadeh, B.; Abbaspour-Gilandeh, Y.; Soltani-Nazarloo, A.; Cruz-Gámez, E.D.L.; Hernández-Hernández, J.L.; Martínez-Arroyo, M. Non-Destructive Measurement of Quality Parameters of Apple Fruit by Using Visible/Near-Infrared Spectroscopy and Multivariate Regression Analysis. Sustainability 2022, 14, 14918. [Google Scholar] [CrossRef]
- Liu, N.; Chen, X.; Liu, Y.; Ding, C.; Tan, Z. Deep Learning Approach for Early Detection of Sub-Surface Bruises in Fruits Using Single Snapshot Spatial Frequency Domain Imaging. Food Meas. 2022, 16, 3888–3896. [Google Scholar] [CrossRef]
- Cen, H.; Lu, R.; Mendoza, F.A.; Ariana, D.P. Assessing Multiple Quality Attributes of Peaches Using Optical Absorption and Scattering Properties. Trans. ASABE 2012, 55, 647–657. [Google Scholar] [CrossRef]
- Kienle, A.; Patterson, M.S.; Dögnitz, N.; Bays, R.; Wagnières, G.; van den Bergh, H. Noninvasive Determination of the Optical Properties of Two-Layered Turbid Media. Appl. Opt. 1998, 37, 779. [Google Scholar] [CrossRef] [PubMed]
- Liemert, A.; Kienle, A. Analytical Approach for Solving the Radiative Transfer Equation in Two-Dimensional Layered Media. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 559–564. [Google Scholar] [CrossRef]
- Wang, A.; Wei, X. A Sequential Method for Estimating the Optical Properties of Two-Layer Agro-Products from Spatially-Resolved Diffuse Reflectance: Simulation. Artif. Intell. Agric. 2019, 3, 69–78. [Google Scholar] [CrossRef]
- Ripoll, J.; Ntziachristos, V.; Culver, J.P.; Pattanayak, D.N.; Yodh, A.G.; Nieto-Vesperinas, M. Recovery of Optical Parameters in Multiple-Layered Diffusive Media: Theory and Experiments. J. Opt. Soc. Am. A 2001, 18, 821. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, J.L.; Wang, L.V. Multiple-Source Optical Diffusion Approximation for a Multilayer Scattering Medium. Appl. Opt. 2007, 46, 6004. [Google Scholar] [CrossRef]
- Hu, D.; Lu, R.; Ying, Y. Spatial-Frequency Domain Imaging Coupled with Frequency Optimization for Estimating Optical Properties of Two-Layered Food and Agricultural Products. J. Food Eng. 2020, 277, 109909. [Google Scholar] [CrossRef]
- Shi, S.; Tan, Z.; Xie, J.; Lu, J. The Effects of Skin Thickness on Optical Transmission Characteristics in Fruits Tissues. Spectrosc. Spectr. Anal. 2015, 35, 1817–1823. [Google Scholar]
- Sun, C.; Aernouts, B.; Van Beers, R.; Saeys, W. Simulation of Light Propagation in Citrus Fruit Using Monte Carlo Multi-Layered (MCML) Method. J. Food Eng. 2021, 291, 110225. [Google Scholar] [CrossRef]
- Zhang, M.; Li, C.; Yang, F. Optical Properties of Blueberry Flesh and Skin and Monte Carlo Multi-Layered Simulation of Light Interaction with Fruit Tissues. Postharvest Biol. Technol. 2019, 150, 28–41. [Google Scholar] [CrossRef]
- Hu, D.; Huang, Y.; Zhang, Q.; Yao, L.; Yang, Z.; Sun, T. Numerical Simulation on Spatial-Frequency Domain Imaging for Estimating Optical Absorption and Scattering Properties of Two-Layered Horticultural Products. Appl. Sci. 2021, 11, 617. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.-I.; Masters, B.R. Biomedical Optics, Principles and Imaging. J. Biomed. Opt. 2008, 13, 049902. [Google Scholar] [CrossRef]
- Haskell, R.C.; Svaasand, L.O.; Tsay, T.-T.; Feng, T.-C.; Tromberg, B.J.; McAdams, M.S. Boundary Conditions for the Diffusion Equation in Radiative Transfer. J. Opt. Soc. Am. A 1994, 11, 2727. [Google Scholar] [CrossRef]
- Cuccia, D.J.; Bevilacqua, F.; Durkin, A.J.; Ayers, F.R.; Tromberg, B.J. Quantitation and Mapping of Tissue Optical Properties Using Modulated Imaging. J. Biomed. Opt. 2009, 14, 024012. [Google Scholar] [CrossRef]
- Svaasand, L.O.; Spott, T.; Fishkin, J.B.; Pham, T.; Tromberg, B.J.; Berns, M.W. Reflectance Measurements of Layered Media with Diffuse Photon-Density Waves: A Potential Tool for Evaluating Deep Burns and Subcutaneous Lesions. Phys. Med. Biol. 1999, 44, 801–813. [Google Scholar] [CrossRef]
- Hu, D.; Sun, T.; Yao, L.; Yang, Z.; Wang, A.; Ying, Y. Monte Carlo: A Flexible and Accurate Technique for Modeling Light Transport in Food and Agricultural Products. Trends Food Sci. Technol. 2020, 102, 280–290. [Google Scholar] [CrossRef]
- Wang, L.; Jacques, S.L.; Zheng, L. MCML—Monte Carlo Modeling of Light Transport in Multi-Layered Tissues. Comput. Methods Programs Biomed. 1995, 47, 131–146. [Google Scholar] [CrossRef]
- Ding, C.; Shi, S.; Chen, J.; Wei, W.; Tan, Z. Analysis of Light Transport Features in Stone Fruits Using Monte Carlo Simulation. PLoS ONE 2015, 10, e0140582. [Google Scholar] [CrossRef]
- Lu, R.; Van Beers, R.; Saeys, W.; Li, C.; Cen, H. Measurement of Optical Properties of Fruits and Vegetables: A Review. Postharvest Biol. Technol. 2020, 159, 111003. [Google Scholar] [CrossRef]
- Xie, D.; Guo, W. Measurement and Calculation Methods on Absorption and Scattering Properties of Turbid Food in Vis/NIR Range. Food Bioprocess Technol. 2020, 13, 229–244. [Google Scholar] [CrossRef]
- Saeys, W.; Velazco-Roa, M.A.; Thennadil, S.N.; Ramon, H.; Nicolaï, B.M. Optical Properties of Apple Skin and Flesh in the Wavelength Range from 350 to 2200 Nm. Appl. Opt. 2008, 47, 908. [Google Scholar] [CrossRef]
- Mustari, A.; Nishidate, I.; Wares, M.d.A.; Maeda, T.; Kawauchi, S.; Sato, S.; Sato, M.; Aizu, Y. Agarose-Based Tissue Mimicking Optical Phantoms for Diffuse Reflectance Spectroscopy. JoVE 2018, 138, e57578. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, J.; Xie, M.; Chen, J. Optical Characteristics of Agarose Gel. Infrared Laser Eng. 2016, 45, 0721003. [Google Scholar] [CrossRef]
- Ninni, P.D.; Martelli, F.; Zaccanti, G. Intralipid: Towards a Diffusive Reference Standard for Optical Tissue Phantoms. Phys. Med. Biol. 2010, 56, N21–N28. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, X.; Fu, X. Spatial Frequency Domain Imaging System Calibration, Correction and Application for Pear Surface Damage Detection. Foods 2021, 10, 2151. [Google Scholar] [CrossRef] [PubMed]
- Cen, H.; Lu, R. Quantification of the Optical Properties of Two-Layer Turbid Materials Using a Hyperspectral Imaging-Based Spatially-Resolved Technique. Appl. Opt. 2009, 48, 5612. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Pan, L.; Abbas, A.; Jiang, Y.; Wang, X. Authentication of the Geographic Origin of Yangshan Region Peaches Based on Hyperspectral Imaging. Postharvest Biol. Technol. 2021, 171, 111320. [Google Scholar] [CrossRef]
- He, X.; Fu, X.; Rao, X.; Fu, F. Nondestructive Determination of Optical Properties of a Pear Using Spatial Frequency Domain Imaging Combined with Phase-Measuring Profilometry. Appl. Opt. 2017, 56, 8207. [Google Scholar] [CrossRef]
- Hu, D.; Fu, X.; He, X.; Ying, Y. Noncontact and Wide-Field Characterization of the Absorption and Scattering Properties of Apple Fruit Using Spatial-Frequency Domain Imaging. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Qin, J.; Lu, R. Measurement of the Optical Properties of Fruits and Vegetables Using Spatially Resolved Hyperspectral Diffuse Reflectance Imaging Technique. Postharvest Biol. Technol. 2008, 49, 355–365. [Google Scholar] [CrossRef]
Sample | d/mm | μa1/mm−1 | μ′s1/mm−1 | μa2/mm−1 | μ′s2/mm−1 |
---|---|---|---|---|---|
1 | 0.4 | 0.0453 | 3.5107 | 0.0309 | 1.2662 |
2 | 0.7 | 0.0453 | 3.5107 | ||
3 | 1.0 | 0.0453 | 3.5107 | ||
4 | 1.5 | 0.0453 | 3.5107 | ||
5 | 2.0 | 0.0453 | 3.5107 | ||
6 | 0.4 | 0.0671 | 4.3884 | ||
7 | 0.7 | 0.0671 | 4.3884 | ||
8 | 1.0 | 0.0671 | 4.3884 | ||
9 | 1.5 | 0.0671 | 4.3884 | ||
10 | 2.0 | 0.0671 | 4.3884 |
Sample | d/mm | Layer | μa/mm−1 | μ′s/mm−1 |
---|---|---|---|---|
Pear | 0.4841–0.5714 | skin | 0.0542–0.1348 | 2.1036–2.7041 |
flesh | 0.0159–0.0484 | 0.6731–0.9491 | ||
Apple | 0.0505–0.1289 | skin | 0.0329–0.0447 | 2.0893–2.6380 |
flesh | 0.0284–0.0439 | 1.8152–2.1261 | ||
Peach | 0.4765–0.4974 | skin | 0.1634–0.4844 | 2.5242–3.5306 |
flesh | 0.0274–0.0553 | 1.4552–1.6873 | ||
Muskmelon | 0.0426–0.1776 | skin | 0.0800–0.1641 | 3.0345–4.3898 |
flesh | 0.0347–0.0447 | 2.0353–3.0714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Fu, X.; Luo, Y.; Xing, S.; Yang, Y. A Method for Obtaining Optical Properties of Two-Layer Tissue such as Thin-Skinned Fruits by Using Spatial Frequency Domain Imaging. Photonics 2023, 10, 622. https://doi.org/10.3390/photonics10060622
Zhang J, Fu X, Luo Y, Xing S, Yang Y. A Method for Obtaining Optical Properties of Two-Layer Tissue such as Thin-Skinned Fruits by Using Spatial Frequency Domain Imaging. Photonics. 2023; 10(6):622. https://doi.org/10.3390/photonics10060622
Chicago/Turabian StyleZhang, Jiaming, Xiaping Fu, Yifeng Luo, Shengqiang Xing, and Yang Yang. 2023. "A Method for Obtaining Optical Properties of Two-Layer Tissue such as Thin-Skinned Fruits by Using Spatial Frequency Domain Imaging" Photonics 10, no. 6: 622. https://doi.org/10.3390/photonics10060622
APA StyleZhang, J., Fu, X., Luo, Y., Xing, S., & Yang, Y. (2023). A Method for Obtaining Optical Properties of Two-Layer Tissue such as Thin-Skinned Fruits by Using Spatial Frequency Domain Imaging. Photonics, 10(6), 622. https://doi.org/10.3390/photonics10060622