Angle-Selective Photodetection in Ge/Si Quantum Dot Photodiodes Enhanced by Microstructured Hole Arrays
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.G.; Wang, X.D.; Liao, J.F.; Jiang, Y.; Kuang, D.B. Enhanced on-off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films. Adv. Funct. Mater. 2020, 30, 1909701. [Google Scholar] [CrossRef]
- Song, W.; Chen, J.; Li, Z.; Fang, X. Self-powered MXene/GaN van der Waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater. 2021, 33, 2101059. [Google Scholar] [CrossRef]
- Han, S.; Quan, J.; Wang, D.; Li, H.; Liu, X.; Xu, J.; Zhang, Y.; Li, Z.; Wu, L.; Fang, X. Anisotropic growth of centimeter-size CsCu2I3 single crystals with ultra-low trap density for aspect-ratio-dependent photodetectors. Adv. Sci. 2023, 10, 2206417. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Suo, F.; Ma, J.; Tobing, L.; Qian, L.; Zhang, D. Surface plasmon enhanced infrared photodetection. Opto-Electron. Adv. 2019, 2, 180026. [Google Scholar] [CrossRef]
- Patra, A.; Rout, C.S. Self-Assembled Quantum Dot Photodetector: A Pathbreaker in the Field of Optoelectronics. In Quantum Dot Photodetectors; Tong, X., Wu, J., Wang, Z.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 289–305. [Google Scholar]
- Hu, X.; Wu, J.; Wu, M.; Hu, J. Recent developments of infrared photodetectors with low-dimensional inorganic nanostructures. Nano Res. 2022, 15, 805–817. [Google Scholar] [CrossRef]
- Hao, Q.; Zhao, X.; Tang, X.; Chen, M. The historical development of infrared photodetection based on intraband transitions. Materials 2023, 16, 1562. [Google Scholar] [CrossRef]
- Guo, H.; Qi, W. New materials and designs for 2D-based infrared photodetectors. Nano Res. 2023, 16, 3074–3103. [Google Scholar] [CrossRef]
- Yan, N.; Qiu, Y.; He, X.; Tang, X.; Hao, Q.; Chen, M. Plasmonic enhanced nanocrystal infrared photodetectors. Materials 2023, 16, 3216. [Google Scholar] [CrossRef]
- Paul, D. Si/SiGe heterostructures: From material and physics to devices and circuits. Semicond. Sci. Technol. 2004, 19, R75–R108. [Google Scholar] [CrossRef]
- Michel, J.; Liu, J.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Sood, A.K.; Zeller, J.W.; Richwine, R.A.; Puri, Y.R.; Efsathiadis, H.; Haldar, P.; Dhar, N.K.; Polla, D.L. SiGe-based visible-NIR photodetector technology for optoelectronic applications. In Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications; Yasin, M., Arof, H., Harun, S.W., Eds.; Intech: Rijeka, Croatia, 2015; pp. 315–362. [Google Scholar]
- Douhan, R.; Lozovoy, K.; Kokhanenko, A.; Deeb, H.; Dirko, V.; Khomyakova, K. Recent advances in Si-compatible nanostructured photodetectors. Technologies 2023, 11, 17. [Google Scholar] [CrossRef]
- Tong, S.; Liu, J.; Wang, J.; Wang, K. Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate. Appl. Phys. Lett. 2002, 80, 1189–1191. [Google Scholar] [CrossRef]
- Alguno, A.; Usami, N.; Ujihara, T.; Fujiwara, K.; Sazaki, G.; Nakajima, K.; Shiraki, Y. Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure. Appl. Phys. Lett. 2003, 83, 1258–1260. [Google Scholar] [CrossRef]
- Elfving, A.; Hansson, G.; Ni, W.X. SiGe (Ge-dot) heterojunction phototransistors for efficient light detection at 1.3–1.55 μm. Physica E 2003, 16, 528–532. [Google Scholar] [CrossRef]
- Yakimov, A.I.; Kirienko, V.V.; Armbrister, V.A.; Bloshkin, A.A.; Dvurechenskii, A.V. Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors. Mater. Res. Express 2016, 3, 105032. [Google Scholar] [CrossRef]
- Brunner, K. Si/Ge nanostructures. Rep. Prog. Phys. 2002, 65, 27–72. [Google Scholar] [CrossRef]
- Schmidt, O.G.; Eberl, K.; Rau, Y. Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands. Phys. Rev. B 2000, 62, 16715–16720. [Google Scholar] [CrossRef]
- Grützmacher, D.; Fromherz, T.; Dais, C.; Stangl, J.; Müller, E.; Ekinci, Y.; Solak, H.; Sigg, H.; Lechner, R.; Wintersberger, E.; et al. Three-Dimensional Si/Ge Quantum Dot Crystals. Nano Lett. 2007, 7, 3150–3156. [Google Scholar] [CrossRef] [PubMed]
- Yakimov, A.I.; Kirienko, V.V.; Bloshkin, A.A.; Dvurechenskii, A.V.; Utkin, D.E. Near-infrared photoresponse in Ge/Si quantum dots enhanced by localized surface plasmons supported by aluminium nanodisks. J. Appl. Phys. 2020, 128, 143101. [Google Scholar] [CrossRef]
- Donnelly, J.L.; Sturmberg, B.C.; Dossou, K.B.; Botten, L.C.; Asatryan, A.A.; Poulton, C.G.; McPhedran, R.C.; de Sterke, M. Mode-based analysis of silicon nanohole arrays for photovoltaic applications. Opt. Express 2014, 22, A1343–A1354. [Google Scholar] [CrossRef]
- Gao, Y.; Cansizoglu, H.; Polat, K.G.; Ghandiparsi, S.; Kaya, A.; Mamtaz, H.H.; Mayet, A.S.; Wang, Y.; Zhang, X.; Yamada, T.; et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics 2017, 11, 301–309. [Google Scholar] [CrossRef]
- Cansizoglu, H.; Bartolo-Perez, C.; Gao, Y.; Ponizovskaya Devine, E.; Ghandiparsi, S.; Polat, K.G.; Mamtaz, H.H.; Yamada, T.; Elrefaie, A.F.; Wang, S.Y.; et al. Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm. Photonics Res. 2018, 6, 734–742. [Google Scholar] [CrossRef]
- Ghandiparsi, S.; Elrefaie, A.F.; Mayet, A.S.; Landolsi, T.; Bartolo-Perez, C.; Cansizoglu, H.; Gao, Y.; Mamtaz, H.H.; Golgir, H.R.; Ponizovskaya Devine, E.; et al. High-speed high-efficiency pin photodiodes for short-reach optical interconnects in data centers. IEEE J. Light. Technol. 2019, 37, 5748–5755. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, S.; Lin, Y.; Huang, Y.C.; Son, B.; Chen, Q.; Guo, X.; Lee, K.H.; Gon, S.C.K.; Gong, X.; et al. High-efficiency GeSn/Si multiple-quantum-well photodetectors with photon-trapping microstructures operating at 2 μm. Opt. Express 2020, 28, 10280–10293. [Google Scholar] [CrossRef] [PubMed]
- Cansizoglu, H.; Ponizovskaya Devine, E.; Gao, Y.; Ghandiparsi, S.; Yamada, T.; Elrefaie, A.F.; Wang, S.Y.; Islam, M.S. A new paradigm in high-speed and high-efficiency silicon photodiodes for communication – Part I: Enhancing photon-material interaction via low-dimensional structures. IEEE Trans. Electron Devices 2018, 65, 372–381. [Google Scholar] [CrossRef]
- Yamada, T.; Ponizovskaya Devine, E.; Ghandiparsi, S.; Bartolo-Perez, C.; Mayet, A.S.; Cansizoglu, H.; Gao, Y.; Ahamed, A.; Wang, S.Y.; Islam, M.S. Modeling of nanohole silicon pin/nip photodetectors: Steady state and transient characteristics. Nanotechnology 2021, 32, 365201. [Google Scholar] [CrossRef] [PubMed]
- Bartolo-Perez, C.; Chandiparsi, S.; Mayet, A.S.; Cansizoglu, H.; Gao, Y.; Qarony, W.; Ahamed, A.; Wang, S.Y.; Cherry, S.R.; Islam, M.S.; et al. Avalanche photodetectors with photon trapping structures for biomedical imaging applications. Opt. Express 2021, 29, 19024–19033. [Google Scholar] [CrossRef]
- Yakimov, A.I.; Kirienko, V.V.; Bloshkin, A.A.; Utkin, D.E.; Dvurechenskii, A.V. Near-infrared photoresponse in Ge/Si quantum dots enhanced by photon-trapping hole arrays. Nanomaterials 2021, 11, 2302. [Google Scholar] [CrossRef]
- Yakimov, A.I.; Kirienko, V.V.; Utkin, D.E.; Dvurechenskii, A.V. Light-trapping-enhanced photodetection in Ge/Si quantum dot photodiodes containing microhole arrays with different hole depths. Nanomaterials 2022, 12, 2993. [Google Scholar] [CrossRef]
- Ünlü, M.S.; Strite, S. Resonant cavity enhanced photonic devices. J. Appl. Phys. 1995, 78, 607–639. [Google Scholar] [CrossRef]
- Shen, Y.; Ye, D.; Celanovic, I.; Johnson, S.G.; Joannopoulos, J.D.; Soljačić, M.S. Optical broadband angular selectivity. Science 2014, 343, 1499–1501. [Google Scholar] [CrossRef]
- Kemsri, T.; Gu, G.; Zhang, Y.; Lan, X.; Zhang, H.; Tice, J.; Lu, X. Angular-dependent photodetection enhancement by a metallic circular disk optical antenna. AIP Adv. 2017, 7, 025013. [Google Scholar] [CrossRef]
- Yi, S.; Zhou, M.; Yu, Z.; Fan, P.; Behdad, N.; Lin, D.; Wang, K.X.; Fan, S.; Brongersma, M. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nat. Nanotechnol. 2018, 13, 1143–1147. [Google Scholar] [CrossRef]
- Nagarajan, A.; Hara, S.; Satoh, H.; Panchanathan, A.P.; Inokawa, H. Angular selectivity of SOI photodiode with surface plasmon antenna. IEICE Electron. Express 2020, 17, 1–6. [Google Scholar] [CrossRef]
- Huang, C.H.; Wu, C.H.; Bikbaev, R.G.; Ye, M.J.; Chen, C.W.; Wang, T.J.; Timofeev, I.V.; Lee, W.; Chen, K.P. Wavelength- and angle-selective photodetectors enabled by graphene hot electrons with Tamm plasmon polaritons. Nanomaterials 2023, 13, 693. [Google Scholar] [CrossRef]
- Zang, K.; Jiang, X.; Huo, Y.; Ding, X.; Morea, M.; Chen, X.; Lu, C.Y.; Ma, J.; Zhou, M.; Xia, Z.; et al. Silicon single-photon avalanche diodes with nanostructured light trapping. Nat. Commun. 2017, 8, 628. [Google Scholar] [CrossRef] [PubMed]
- Suo, F.; Tong, J.; Zhang, D.H. Photon-trapping array for enhanced midwave infrared photoresponse. J. Phys. D Appl. Phys. 2021, 54, 505105. [Google Scholar] [CrossRef]
- Baba, T. Slow light in photonic crystals. Nat. Photonics 2008, 2, 465–473. [Google Scholar] [CrossRef]
- Duché, D.; Escoubas, L.; Simon, J.J.; Torchio, P.; Vervisch, W.; Flory, F. Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells. Appl. Phys. Lett. 2008, 92, 193310. [Google Scholar] [CrossRef]
- Sturmberg, B.C.; Dossou, K.B.; Botten, L.C.; Asatryan, A.A.; Poulton, C.G.; de Sterke, M.; McPhedran, R.C. Modal analysis of enhanced absorption in silicon nanowire arrays. Opt. Express 2011, 19, A1067–A1081. [Google Scholar] [CrossRef] [PubMed]
- Gomard, G.; Peretti, R.; Callard, S.; Meng, X.; Artinyan, R.; Deschamps, T.; i Cabarrocas, P.R.; Drouard, E.; Seassal, C. Blue light absorption enhancement based on vertically channeling modes in nano-hole arrays. Appl. Phys. Lett. 2014, 104, 051119. [Google Scholar] [CrossRef]
- Yakimov, A.I.; Bloshkin, A.A.; Dvurechenskii, A.V. Tailoring the optical field enhancement in Si-based structures covered by nanohole arrays in gold films for near-infrared photodetection. Photonics Nanostruct. 2020, 40, 100790. [Google Scholar] [CrossRef]
- Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2008. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakimov, A.I.; Kirienko, V.V.; Bloshkin, A.A.; Utkin, D.E.; Dvurechenskii, A.V. Angle-Selective Photodetection in Ge/Si Quantum Dot Photodiodes Enhanced by Microstructured Hole Arrays. Photonics 2023, 10, 764. https://doi.org/10.3390/photonics10070764
Yakimov AI, Kirienko VV, Bloshkin AA, Utkin DE, Dvurechenskii AV. Angle-Selective Photodetection in Ge/Si Quantum Dot Photodiodes Enhanced by Microstructured Hole Arrays. Photonics. 2023; 10(7):764. https://doi.org/10.3390/photonics10070764
Chicago/Turabian StyleYakimov, Andrew I., Victor V. Kirienko, Aleksei A. Bloshkin, Dmitrii E. Utkin, and Anatoly V. Dvurechenskii. 2023. "Angle-Selective Photodetection in Ge/Si Quantum Dot Photodiodes Enhanced by Microstructured Hole Arrays" Photonics 10, no. 7: 764. https://doi.org/10.3390/photonics10070764
APA StyleYakimov, A. I., Kirienko, V. V., Bloshkin, A. A., Utkin, D. E., & Dvurechenskii, A. V. (2023). Angle-Selective Photodetection in Ge/Si Quantum Dot Photodiodes Enhanced by Microstructured Hole Arrays. Photonics, 10(7), 764. https://doi.org/10.3390/photonics10070764