A Modified BRDF Model Based on Cauchy-Lorentz Distribution Theory for Metal and Coating Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling of BRDF
2.2. BRDF Experimental Measurement
2.2.1. Sample Surface Characterization
2.2.2. Experiment Device
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Optimization Process Using Simulated Annealing Algorithm
- Objective Function:
- The objective function, which is denoted as ‘E(x)’, represents the function to be minimized;
- The input parameter x contains the coefficients that will be optimized: ‘𝑘s’, ‘𝑘dd’, and ‘𝑘id’.
- Simulated Annealing Algorithm (SAA) Parameters:
- ‘initial_temperature’: the initial temperature of the annealing process;
- ‘final_temperature’: the termination temperature at which the annealing process stops;
- ‘cooling_rate’: the rate at which the temperature decreases during the annealing process;
- ‘max_iterations’: the maximum number of iterations allowed;
- ‘tolerance’: the convergence threshold for the optimization process.
- Parameter Range:
- ‘lb’: the lower bound of the parameter range for ‘𝑘s’, ‘𝑘dd’, and ‘𝑘id’;
- ‘ub’: the upper bound of the parameter range for ‘𝑘s’, ‘𝑘dd’, and ‘𝑘id’.
- Initialization:
- Initialize the SAA with the following variables:
- ‘current_temperature’: set the initial temperature to initial_temperature;
- ‘current_solution’: randomly initialize a solution within the parameter range defined based on ‘lb’ and ‘ub’;
- ‘best_solution’: set the best solution as the current solution;
- ‘best_cost’: set the best cost as the objective function value of the current solution;
- ‘history’: an array to store the objective function values during the optimization process.
- Optimization Iterations:
- Iterate the optimization process as follows:
- Generate a new solution by perturbing the current solution based on the current temperature;
- Constrain the new solution within the parameter range defined based on ‘lb’ and ‘ub’;
- Calculate the objective function value for the new solution;
- Decide whether to accept the new solution based on the objective function value and the current temperature;
- Decrease the temperature based on the cooling rate;
- Check for termination conditions: if the temperature is below the final temperature or the objective function change is below the tolerance, stop the optimization process.
- Output:
- Display the optimal solution values for ‘𝑘s’, ‘𝑘dd’, and ‘𝑘id’ found during the optimization process;
- Display the corresponding minimum objective function value.
- Convergence Curve:
- Plot a graph showing the convergence of the objective function values over the iterations.
References
- Born, M.; Wolf, E. Principles of Optics, 2nd (revised) ed.; Pergamon Press: Oxford, UK, 1964. [Google Scholar]
- Roujean, J.L.; Leroy, M.; Deschamps, P.Y. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. 1992, 97, 20455. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Wen, J.G.; Xiao, Q.; Hao, D.L.; Lin, X.W.; Liu, Q.H. Exploring the Applicability of the Semi-Empirical BRDF Models at Different Scales Using Airborne Multi-Angular Observations. IEEE Geosci. Remote Sens. 2022, 19, 99. [Google Scholar] [CrossRef]
- Scarboro, C.G.; Doherty, C.J.; Balint-Kurti, P.J.; Kudenov, M.W. Multistatic fiber-based system for measuring the Mueller matrix bidirectional reflectance distribution function. Appl. Opt. 2022, 61, 9832–9842. [Google Scholar] [CrossRef] [PubMed]
- Wang, O.; Gunawardane, P.; Scher, S.; Davis, J. Material classification using BRDF slices. In Proceedings of the IEEE 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 2805–2811. [Google Scholar]
- Shi, H.D.; Liu, Y.; He, C.F.; Wang, C.; Li, Y.C.; Zhang, Y.L. Analysis of infrared polarization properties of targets with rough surfaces. Opt. Laser Technol. 2022, 151, 108069. [Google Scholar] [CrossRef]
- Jiang, C.X.; Tan, Y.; Qu, G.N.; Lv, Z.; Gu, N.W.; Lu, W.J.; Zhou, J.W.; Li, Z.W.; Xu, R.; Wang, K.L.; et al. Super diffraction limit spectral imaging detection and material type identification of distant space objects. Opt. Express 2022, 30, 46911–46925. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wu, Z.; Cao, Y.; Huang, X. Spectral scattering characteristics of space target in near-UV to visible bands. Opt. Express 2014, 22, 8515–8524. [Google Scholar] [CrossRef]
- Sohaib, A.; Broadbent, L.; Farooq, A.R.; Smith, L.N.; Smith, M.L. BRDF of human skin in the visible spectrum. Sens. Rev. 2017, 37, 390–395. [Google Scholar] [CrossRef]
- Otremba, Z.; Piskozub, J. Modelling the bidirectional reflectance distribution function (BRDF) of seawater polluted by an oil film. Opt. Express 2004, 8, 1671–1676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.H.; Wang, L.C.; Zhao, B.; Gu, Y.; Wong, M.S.; She, L.; Xia, X.H.; Dong, J.D.; Ji, Y.X.; Gong, W.; et al. A Geometry-Discrete Minimum Reflectance Aerosol Retrieval Algorithm (GeoMRA) for Geostationary Meteorological Satellite Over Heterogeneous Surfaces. IEEE Trans. Geosci. Remote 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Atkinson, G.A.; Hancock, E.R. Shape estimation using polarization and shading from two views. IEEE Trans. Pattern Anal. 2007, 29, 2001–2017. [Google Scholar] [CrossRef] [Green Version]
- Ziang, C.; Hongdong, L.; Richard, H.; Yinqiang, Z.; Imari, S. Diffeomorphic Neural Surface Parameterization for 3D and Reflectance Acquisition; ACM: New York, NY, USA, 2022; pp. 7–10. [Google Scholar]
- Weyrich, T.; Pfister, H.; Gross, M. Rendering Deformable Surface Reflectance Fields. IEEE Trans. Vis. Comput. Graph. 2005, 11, 48. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhou, K.; Chen, Y.; Lin, S.; Shi, J.; Guo, B. Interactive relighting with dynamic BRDFs. ACM Trans. Graph. 2007, 26, 21–27. [Google Scholar] [CrossRef]
- Bernardini, F.; Martin, I.M.; Rushmeier, H. High-quality texture reconstruction from multiple scans. IEEE Trans. Vis. Comput. Graph. 2001, 7, 318–332. [Google Scholar] [CrossRef] [Green Version]
- van der Sanden, K.; Hogervorst, M.A.; Bijl, P. Hybrid simulation for creating realistic scenes for signature assessment. In Target and Background Signatures VIII; Stein, K., Schleijpen, R., Eds.; Conference on Target and Background Signatures VII; SPIE: Bellingham, WA, USA, 2022; Volume 12270. [Google Scholar]
- Gilmore, M.S.; Casta, O.R.; Mann, T.; Anderson, R.C.; Mjolsness, E.D.; Manduchi, R.; Saunders, R.S. Strategies for autonomous rovers at Mars. J. Geophys. Res. Atmos. 2002, 105, 29223–29237. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.Q.; Dorsey, J.; Rushmeier, H. Learning-Based Inverse Bi-Scale Material Fitting From Tabular BRDFs. IEEE Trans. Vis. Comput. Graph. 2022, 28, 1810–1823. [Google Scholar] [CrossRef]
- Montes Soldado, R.A.; Ureña Almagro, C. An Overview of BRDF Models; University of Grenada: True Blue, Grenada, 2012; pp. 2–22. [Google Scholar]
- Torrance, K.E.; Sparrow, E.M.; Birkebak, R.C. Polarization, Directional Distribution, and Off-Specular Peak Phenomena in Light Reflected from Roughened Surfaces. J. Opt. Soc. Am. 1966, 56, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Torrance, K.E.; Sparrow, E.M. Theory for Off-Specular Reflection from Roughened Surfaces*. J. Opt. Soc. Am. 1967, 57, 1105–1114. [Google Scholar] [CrossRef]
- Cook, R.L. A reflectance models for computer graphics. ACM Trans. Graph. 1982, 15, 307–316. [Google Scholar] [CrossRef]
- Schott, J.R. Fundamentals of Polarimetric Remote Sensing; SPIE Press: Bellingham, WA, USA, 2009. [Google Scholar]
- Priest, R.G.; Gerner, T.A. Polarimetric BRDF in the Microfacet Model: Theory and Measurements. In Proceedings of the Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, Washington, DC, USA, 1 March 2000; Volume 5, pp. 988–993. [Google Scholar]
- Priest, R.G.; Meier, S.R. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces. Opt. Eng. 2002, 41, 988–993. [Google Scholar] [CrossRef]
- Ward, G. Measuring and modeling anisotropic reflection. ACM SIGGRAPH Comput. Graph. 1992, 2, 265–272. [Google Scholar] [CrossRef]
- Duer, A. An Improved Normalization for the Ward Reflectance Model. J. Graph. Gpu Game Tools 2006, 11, 51–59. [Google Scholar] [CrossRef]
- Wellems, D.; Ortega, S.; Bowers, D.; Boger, J.; Fetrow, M. Long wave infrared polarimetric model: Theory, measurements and parameters. J. Opt. A Pure Appl. Opt. 2006, 8, 914. [Google Scholar] [CrossRef]
- Zhensen, W.; Donghui, X.; Pinhua, X.; Qingnong, W. Modeling reflectance function from rough surface and algorithms. Acta Opt. Sin. 2002, 22, 897–901. [Google Scholar]
- Bai, L.; Wu, Z.; Zou, X.; Cao, Y. Seven-parameter statistical model for BRDF in the UV band. Opt. Express 2012, 20, 12085–12094. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhu, J.P.; Liu, H.; Hou, X. Model of bidirectional reflectance distribution function for metallic materials. Chin. Phys. B 2016, 25, 94201. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, J.P.; Wang, K.; Wang, X.H.; Xu, R. Three-Component Model for Bidirectional Reflection Distribution Function of Thermal Coating Surfaces. Chin. Phys. Lett. 2016, 33, 64204. [Google Scholar] [CrossRef]
- Nicodemus, F.E. Radiometry with Spectrally Selective Sensors. Appl. Opt. 1968, 7, 1649–1652. [Google Scholar] [CrossRef]
- Phong, B.T. Illumination for Computer Generated Pictures. Commun. ACM 1975, 18, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
Incident Angle θi | 20° | 30° | 40° | 50° | 60° | 70° |
---|---|---|---|---|---|---|
Al | 362 | 397 | 398 | 816 | 887 | 1425 |
Cu | 164 | 193 | 211 | 245 | 249 | 392 |
SR107 | 7 | 48 | 51 | 54 | 54 | 148 |
S781 | 7 | 11 | 13.5 | 32 | 141 | 553 |
Al | Cu | |||||
---|---|---|---|---|---|---|
30° | 40° | 50° | 30° | 40° | 50° | |
RMSE 1 | 0.1069 | 0.0578 | 0.2749 | 0.0587 | 0.0317 | 0.1110 |
RMSE 2 | 0.0273 | 0.0382 | 0.2733 | 0.0198 | 0.0213 | 0.1114 |
RMSE 3 | 0.0163 | 0.0257 | 0.2533 | 0.0182 | 0.0167 | 0.1108 |
Percentage decrease 1 | 84.75% | 55.54% | 7.86% | 68.99% | 47.32% | 0.18% |
Percentage decrease 2 | 40.29% | 32.72% | 7.32% | 8.08% | 21.60% | 0.54% |
SR107 | S781 | |||||
---|---|---|---|---|---|---|
30° | 40° | 50° | 30° | 40° | 50° | |
RMSE 1 | 0.0635 | 0.0885 | 0.1089 | 0.1501 | 0.1351 | 0.0921 |
RMSE 2 | 0.0501 | 0.0445 | 0.0654 | 0.0690 | 0.0355 | 0.0537 |
RMSE 3 | 0.0307 | 0.0288 | 0.0404 | 0.0329 | 0.0267 | 0.0175 |
Percentage decrease 1 | 51.65% | 67.46% | 62.90% | 78.08% | 80.24% | 81.00% |
Percentage decrease 2 | 38.72% | 35.28% | 38.23% | 52.32% | 24.79% | 67.41% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Zhu, J.; Huang, L.; Li, H.; Deng, J.; Zhang, X.; Wang, K.; Liu, H.; Hou, X. A Modified BRDF Model Based on Cauchy-Lorentz Distribution Theory for Metal and Coating Materials. Photonics 2023, 10, 773. https://doi.org/10.3390/photonics10070773
Guo F, Zhu J, Huang L, Li H, Deng J, Zhang X, Wang K, Liu H, Hou X. A Modified BRDF Model Based on Cauchy-Lorentz Distribution Theory for Metal and Coating Materials. Photonics. 2023; 10(7):773. https://doi.org/10.3390/photonics10070773
Chicago/Turabian StyleGuo, Fengqi, Jingping Zhu, Liqing Huang, Haoxiang Li, Jinxin Deng, Xiangzhe Zhang, Kai Wang, Hong Liu, and Xun Hou. 2023. "A Modified BRDF Model Based on Cauchy-Lorentz Distribution Theory for Metal and Coating Materials" Photonics 10, no. 7: 773. https://doi.org/10.3390/photonics10070773
APA StyleGuo, F., Zhu, J., Huang, L., Li, H., Deng, J., Zhang, X., Wang, K., Liu, H., & Hou, X. (2023). A Modified BRDF Model Based on Cauchy-Lorentz Distribution Theory for Metal and Coating Materials. Photonics, 10(7), 773. https://doi.org/10.3390/photonics10070773