Rotational Dynamics Induced by Low-Energy Binary Collisions of Quantum Droplets
(This article belongs to the Section Quantum Photonics and Technologies)
Abstract
:1. Introduction
2. Evolution Equation
Ground State
3. Binary Collisions of Quantum Droplets
Initial State
4. Evolution of Dynamical Variables during the Collision
- (i)
- Symmetric mixtures of homonuclear K atoms and scattering lengths compatible with the Feshbach resonances of such atoms: , [3];
- (ii)
- Mixtures of K and Rb [5] with scattering lengths , , . The stability condition was imposed.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrov, D.S. Quantum mechanical stabilization of a collapsing Bose-Bose mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, D.S.; Astrakharchik, G.E. Ultradilute low-dimensional liquids. Phys. Rev. Lett. 2016, 117, 100401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 2017, 359, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M. Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett. 2018, 120, 235301. [Google Scholar] [CrossRef] [Green Version]
- D’Errico, C.; Burchianti, A.; Prevedelli, M.; Salasnich, L.; Ancilotto, F.; Modugno, M.; Minardi, F.; Fort, C. Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res. 2019, 1, 033155. [Google Scholar]
- Guo, Z.; Jia, F.; Li, L.; Ma, Y.; Hutson, J.M.; Cui, X.; Wang, D. Lee-Huang-Yang effects in the ultracold mixture of 23Na and 87Rb with attractive interspecies interactions. Phys. Rev. Res. 2021, 3, 033247. [Google Scholar]
- Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and eigenfunctions of a Bose system of hard spheresand its low-temperature properties. Phys. Rev. 1957, 106, 1135. [Google Scholar] [CrossRef]
- Larsen, D.M. Binary mixtures of dilute Bose gases with repulsive interactions at low temperature. Ann. Phys. 1963, 24, 89. [Google Scholar] [CrossRef]
- Ferrier-Barbut, I.; Kadau, H.; Schmitt, M.; Wenzel, M.; Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 2016, 116, 215301. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, M.; Wenzel, M.; Böttcher, F.; Ferrier-Barbut, I.; Pfau, T. Self-bound droplets of a dilute magnetic quantum liquid. Nature 2016, 539, 259. [Google Scholar] [CrossRef] [Green Version]
- Chomaz, L.; Baier, S.; Petter, D.; Mark, M.J.; Wächtler, F.; Santos, L.; Ferlaino, F. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 2016, 6, 041039. [Google Scholar] [CrossRef] [Green Version]
- Tanzi, L.; Lucioni, E.; Famà, F.; Catani, J.; Fioretti, A.; Gabbanini, C.; Bisset, R.N.; Santos, L.; Modugno, G. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 2019, 122, 130405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böttcher, F.; Wenzel, M.; Schmidt, J.N.; Guo, M.; Langen, T.; Ferrier-Barbut, I.; Pfau, T.; Bombín, R.; Sánchez-Baena, J.; Boronat, J.; et al. Dilute dipolar quantum droplets beyond the extended Gross-Pitaevskii equation. Phys. Rev. Res. 2019, 1, 033088. [Google Scholar] [CrossRef] [Green Version]
- Fetter, A.L. Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 2009, 81, 647. [Google Scholar] [CrossRef] [Green Version]
- Malomed, B.A. Vortex solitons: Old results and new perspectives. Phys. D 2019, 399, 108. [Google Scholar] [CrossRef] [Green Version]
- Kartashov, Y.V.; Malomed, B.A.; Torner, L. Metastability of. Quantum Droplet Clusters. Phys. Rev. Lett. 2019, 122, 193902. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.-H.; Pang, W.; Liu, B.; Li, Y.-Y.; Malomed, B.A. A new form of liquid matter: Quantum droplets. Front. Phys. 2021, 16, 32201. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Luo, Z.; Huang, C.; Tan, H.; Pang, W.; Malomed, B.A. Two-dimensional vortex quantum droplets. Phys. Rev. A 2018, 98, 063602. [Google Scholar] [CrossRef] [Green Version]
- Examilioti, P.; Kavoulakis, G.M. Ground state and rotational properties of two-dimensional self-bound quantum droplets. J. Phys. B 2020, 53, 175301. [Google Scholar] [CrossRef]
- Tengstrand, M.N.; Stürmer, P.; Karabulut, E.Ö.; Reimann, S.M. Rotating binary Bose-Einstein condensates and vortex clusters in quantum droplets. Phys. Rev. Lett. 2019, 123, 160405. [Google Scholar] [CrossRef] [Green Version]
- Stürmer, P.; Tengstrand, M.N.; Sachdeva, R.; Reimann, S.M. Breathing mode in two-dimensional binary self-bound Bose-gas droplets. Phys. Rev. A 2021, 103, 053302. [Google Scholar] [CrossRef]
- Kartashov, Y.V.; Malomed, B.A.; Torner, T. Structured heterosymmetric quantum droplets. Phys. Rev. Res. 2020, 2, 033522. [Google Scholar] [CrossRef]
- Otajonov, S.R.; Tsoy, E.N.; Abdullaev, F.K. Variational approximation for two-dimensional quantum droplets. Phys. Rev. E 2020, 102, 062217. [Google Scholar] [CrossRef] [PubMed]
- Kartashov, Y.V.; Malomed, B.A.; Tarruell, L.; Torner, L. Three-dimensional droplets of swirling superfluids. Phys. Rev. A 2018, 98, 013612. [Google Scholar] [CrossRef] [Green Version]
- Ancilotto, F.; Barranco, M.; Guilleumas, M.; Pi, M. Self-bound ultradilute Bose mixtures within local density approximation. Phys.Rev. A 2018, 98, 053623. [Google Scholar] [CrossRef] [Green Version]
- Caldara, M.; Ancilotto, F. Vortices in quantum droplets of heteronuclear Bose mixtures. Phys. Rev. A 2022, 105, 063328. [Google Scholar] [CrossRef]
- Ferioli, G.; Semeghini, G.; Masi, L.; Giusti, G.; Modugno, G.; Inguscio, M.; Gallemi, A.; Recati, A.; Fattori, M. Collisions of Self-Bound Quantum Droplets. Phys. Rev. Lett. 2019; 122, 090401. [Google Scholar]
- Cikojević, V.; Vranješ Markić, L.; Pi, M.; Barranco, M.; Ancilotto, F.; Boronat, J. Dynamics of equilibration and collisions in ultradilute quantum droplets. Phys. Rev. Res. 2021, 3, 043139. [Google Scholar] [CrossRef]
- Alba-Arroyo, J.E.; Caballero-Benitez, S.F.; Jáuregui, R. Weber number and the outcome of binary collisions between quantum droplets. Sci. Rep. 2022, 12, 18467. [Google Scholar] [CrossRef]
- Frohn, A.; Roth, N. Dynamics of Droplets; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Cikojević, V.; Dẽlalija, K.; Stipanović, P.; Vranješ Markić, L.; Boronat, J. Ultradilute quantum liquid drops. Phys. Rev. B 2018, 97, 140502. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Liu, X.J. Microscopic derivation of the extended Gross-Pitaevskii equation for quantum droplets in binary Bose mixtures. Phys. Rev. A 2020, 102, 043302. [Google Scholar] [CrossRef]
- Strang, G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 1968, 5, 506. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Jaksch, D.; Markowich, P.A. Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation. J. Comp. Phys. 2003, 187, 318. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H. Numerical Recipies in Fortran 77: The Art of Scientific Computing, 2nd ed.; University of Cambridge: Cambridge, UK, 1992. [Google Scholar]
[m] | ||
---|---|---|
96,818 = 7.64 | 3.36 | 2.50 |
70,227 = 5.54 | 2.97 | 3.17 |
37,000 = 2.9 | 2.31 | 3.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba-Arroyo, J.E.; Caballero-Benitez, S.F.; Jáuregui, R. Rotational Dynamics Induced by Low-Energy Binary Collisions of Quantum Droplets. Photonics 2023, 10, 823. https://doi.org/10.3390/photonics10070823
Alba-Arroyo JE, Caballero-Benitez SF, Jáuregui R. Rotational Dynamics Induced by Low-Energy Binary Collisions of Quantum Droplets. Photonics. 2023; 10(7):823. https://doi.org/10.3390/photonics10070823
Chicago/Turabian StyleAlba-Arroyo, J. E., S. F. Caballero-Benitez, and R. Jáuregui. 2023. "Rotational Dynamics Induced by Low-Energy Binary Collisions of Quantum Droplets" Photonics 10, no. 7: 823. https://doi.org/10.3390/photonics10070823
APA StyleAlba-Arroyo, J. E., Caballero-Benitez, S. F., & Jáuregui, R. (2023). Rotational Dynamics Induced by Low-Energy Binary Collisions of Quantum Droplets. Photonics, 10(7), 823. https://doi.org/10.3390/photonics10070823