Image Enhancement Method for Photoacoustic Imaging of Deep Brain Tissue
Abstract
:1. Introduction
2. Methods
3. Materials
3.1. Phantoms and Animals
3.2. Photoacoustic Imaging System
4. Results and Discussion
4.1. Phantom Experiments
4.2. Animals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Jiang, H. Enhancing finite element-based photoacoustic tomography by localized reconstruction method. Photonics 2022, 9, 337. [Google Scholar] [CrossRef]
- Vu, T.; Razansky, D.; Yao, J. Listening to tissues with new light: Recent technological advances in photoacoustic imaging. J. Opt. 2019, 21, 103001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tao, W.; Zhao, H. The optical inverse problem in quantitative photoacoustic tomography: A review. Photonics 2023, 10, 487. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, J.; Shen, Y.; Gao, Z.; Yang, C.; Liang, M.; Gao, F.; Liu, L.; Zhao, H.; Gao, F. Photoacoustic digital brain and deep-learning-assisted image reconstruction. Photoacoustics 2023, 31, 2213–5979. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Oh, D.; Kim, J.; Kim, C. Functional photoacoustic imaging: From nano- and micro- to macro-scale. Nano Converg. 2023, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Hariri, A.; Fatima, A.; Mohammadian, N.; Mahmoodkalayeh, S.; Ansari, M.A.; Bely, N.; Avanaki, M. Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes. J. Biomed. Opt. 2017, 22, 075001. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L. Functional photoacoustic microscopy of hemodynamics: A review. Biomed. Eng. Lett. 2022, 12, 97–124. [Google Scholar] [CrossRef]
- Wang, L.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Zhao, T.R.; Desjardins, A.E.; Ourselin, S.; Vercauteren, T.; Xia, W.F. Minimally invasive photoacoustic imaging: Current status and future perspectives. Photoacoustics 2019, 16, 100146. [Google Scholar] [CrossRef]
- Bhatt, M.; Ayyalasomayajula, K.R.; Yalavarthy, P.K. Generalized beer–lambert model for near-infrared light propagation in thick biological tissues. J. Biomed. Opt. 2016, 21, 076012. [Google Scholar] [CrossRef]
- Leino, A.; Lunttila, T.; Mozumder, M.; Pulkkinen, A.; Tarvainen, T. Perturbation Monte Carlo method for quantitative photoacoustic tomography. IEEE Trans. Med. Imaging 2020, 39, 2985–2995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, X.; Sun, M.; Chai, Y.; Hao, Z.; Zhang, C. Monte Carlo simulation for the light propagation in two-layered cylindrical biological tissues. J. Mod. Opt. 2007, 54, 1395–1405. [Google Scholar] [CrossRef]
- Zhao, H.; Li, K.; Chen, N.; Zhang, K.; Wang, L.; Lin, R.; Gong, X.; Song, L.; Liu, Z.; Liu, C. Multiscale vascular enhancement filter applied to in vivo morphologic and functional photoacoustic imaging of rat ocular vasculature. IEEE Photonics J. 2019, 11, 3900912. [Google Scholar] [CrossRef]
- Benyamin, M.; Genish, H.; Califa, R.; Wolbromsky, L.; Ganani, M.; Wang, Z.; Zhou, S.; Xie, Z.; Zalevsky, Z. Autoencoder based blind source separation for photoacoustic resolution enhancement. Sci. Rep. 2020, 10, 21414. [Google Scholar] [CrossRef] [PubMed]
- Murata, N.; Ikeda, S.; Ziehe, A. An approach to blind source separation based on temporal structure of speech signals. Neurocomputing 2001, 41, 1–24. [Google Scholar] [CrossRef]
- Zhou, M.; Xia, H.; Zhong, H.; Zhang, J.; Gao, F. A noise reduction method for photoacoustic imaging in vivo based on EMD and conditional mutual information. IEEE Photonics J. 2019, 11, 3900310. [Google Scholar] [CrossRef]
- Lv, X.; Xu, X.; Feng, Q.; Zhang, B.; Ding, Y.; Liu, Q. High-contrast imaging based on wavefront shaping to improve low signal-to-noise ratio photoacoustic signals using superpixel method. Chin. Phys. B 2020, 29, 034301. [Google Scholar] [CrossRef]
- Manwar, R.; Hosseinzadeh, M.; Hariri, A.; Kratkiewicz, K.; Noei, S.; Avanaki, M.R.N. Photoacoustic signal enhancement: Towards utilization of low energy laser diodes in real-time photoacoustic imaging. Sensors 2018, 18, 3498. [Google Scholar] [CrossRef]
- Manwar, R.; Li, X.; Mahmoodkalayeh, S.; Asano, E.; Zhu, D.; Avanaki, K. Deep learning protocol for improved photoacoustic brain imaging. Biophotonics 2020, 13, e202000212. [Google Scholar] [CrossRef]
- Tang, M.; Li, Y.; Li, X.; Liu, B. Local enhancement method and its applications to UAV image matching. Remote Sens. Land Resour. 2013, 25, 53–57. [Google Scholar] [CrossRef]
- Cao, G.; Tian, H.; Yu, L.; Huang, X. Fast contrast enhancement by adaptive pixel value stretching. Int. J. Distrib. Sens. Netw. 2018, 14, 155014771879380. [Google Scholar] [CrossRef]
- Zhang, H.; Qian, W.; Wan, M.; Zhang, K. Infrared image enhancement algorithm using local entropy mapping histogram adaptive segmentation. Infrared Phys. Technol. 2022, 120, 104000. [Google Scholar] [CrossRef]
- Jia, D.; Yang, J. A multi-scale image enhancement algorithm based on deep learning and illumination compensation. Trait. Du Signal 2022, 39, 179–185. [Google Scholar] [CrossRef]
- Ebner, M. Color constancy based on local space average color. Mach. Vis. Appl. 2009, 20, 283–301. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Z.; Jiang, D.; Tong, X.; Tao, B.; Jiang, G.; Kong, J.; Yun, J.; Liu, Y.; Liu, X.; et al. Low-illumination image enhancement algorithm based on improved multi-scale retinex and ABC algorithm optimization. Front. Bioeng. Biotechnol. 2022, 10, 865820. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, B.; Zhang, C.; Yan, W.; Zhao, Z.; Wang, M. Low-light image joint enhancement optimization algorithm based on frame accumulation and multi-scale Retinex. Ad Hoc Netw. 2021, 113, 102398. [Google Scholar] [CrossRef]
- Li, X.; Shang, J.; Song, W.; Chen, J.; Zhang, G.; Pan, J. Low-light image enhancement based on constraint low-rank approximation retinex model. Sensors 2022, 22, 6126. [Google Scholar] [CrossRef]
- Jia, L. Application of image enhancement method for digital images based on Retinex theory. Optik 2013, 124, 5986–5988. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Wang, L.; Huang, C.; Luo, X. A hybrid retinex-based algorithm for UAV-taken image enhancement. IEICE Trans. Inf. Syst. 2021, E104D, 2024–2027. [Google Scholar] [CrossRef]
- Huang, F. Parallelization implementation of the multi-scale retinex image-enhancement algorithm based on a many integrated core platform. Concurr. Comput. Pract. Exp. 2020, 32, e5832. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, Y.; Lu, F.; Deng, Z.; Liu, Y. An underwater image enhancement algorithm based on MSR parameter optimization. J. Mar. Sci. 2020, 8, 741. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, I.; Zhang, Y.; Basu, A. Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency. ISPRS J. Photogramm. Remote Sens. 2017, 128, 16–26. [Google Scholar] [CrossRef]
- Peng, D.; Zhu, L.; Li, Z.; Li, Z.; Li, H. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber. Optoelectron. Lett. 2017, 13, 367–371. [Google Scholar] [CrossRef]
- Kang, W.; Gao, H.; Pan, D.; Zhao, X. KRLODPLSMR-GCV3DC—Improving contrast-based photoacoustic imaging based on model reconstruction. J. Cit. Rep. 2020, 22, 209. [Google Scholar] [CrossRef]
- Timischl, F. The contrast-to-noise ratio for image quality evaluation in scanning electron microscopy. Scanning 2015, 37, 54–62. [Google Scholar] [CrossRef]
- Yan, L.; Liu, H.; Li, J.; Cao, H.; Yan, C.; Feng, P.; Shi, J. Comparison and application of CT hemotoma volume measurement software with Duotian formula. Hebei Med. J. 2010, 32, 453–475. [Google Scholar] [CrossRef]
- Karwacki, Z.; Kowianski, P.; Witkowska, M.; Karwacka, M.; Dziewiatkowski, J.; Moryś, J. The pathophysiology of intracerebral haemorrhage. Folia Morphol. 2006, 65, 295–300. [Google Scholar] [CrossRef]
Object’s Location | 1 cm | 3 cm | 5 cm |
---|---|---|---|
Original algorithm | 3.88 | 4.04 | 3.73 |
Error 1 | 29.33% | 34.67% | 24.33% |
Log algorithm | 3.88 | 4.04 | 3.67 |
Error 2 | 29.33% | 34.67% | 22.33% |
MSR algorithm | 3.46 | 3.95 | 3.56 |
Error 3 | 15.33% | 31.67% | 18.67% |
Log-MSR algorithm | 3.33 | 3.90 | 3.62 |
Error 2 | 11.00% | 30.00% | 20.67% |
Original Algorithm | Log-MSR Algorithm | |||||
---|---|---|---|---|---|---|
Object’s location | 1 cm | 3 cm | 5 cm | 1 cm | 3 cm | 5 cm |
Average amplitude | 0.6156 | 0.5276 | 0.55183 | 0.6916 | 0.6653 | 0.6362 |
Attenuation ratio | - | 14.29% | 15.81% | - | 3.80% | 8.01% |
Original Algorithm | Log Algorithm | MSR Algorithm | Log-MSR Algorithm | |
---|---|---|---|---|
CNR | 0.1649 | 0.1337 | 0.4882 | 0.3981 |
NO.1 Rat | Error 1 | NO.2 Rat | Error 2 | |
---|---|---|---|---|
Photograph of the actual brain section | 3.0128 ± 0.1962 | - | 7.2716 ± 0.3154 | - |
Original image | 2.5536 ± 0.2482 | 15.24% | 6.6079 ± 0.3946 | 9.13% |
Enhanced image constructed by the Log-MSR | 2.7692 ± 0.1062 | 8.09% | 7.0923 ± 0.3456 | 2.47% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Wu, D.; Wang, X.; Wen, Y.; Zhang, J.; Yang, Y.; Chen, Y.; Wu, Y.; Chi, Z.; Jiang, H. Image Enhancement Method for Photoacoustic Imaging of Deep Brain Tissue. Photonics 2024, 11, 31. https://doi.org/10.3390/photonics11010031
Xie Y, Wu D, Wang X, Wen Y, Zhang J, Yang Y, Chen Y, Wu Y, Chi Z, Jiang H. Image Enhancement Method for Photoacoustic Imaging of Deep Brain Tissue. Photonics. 2024; 11(1):31. https://doi.org/10.3390/photonics11010031
Chicago/Turabian StyleXie, Yonghua, Dan Wu, Xinsheng Wang, Yanting Wen, Jing Zhang, Ying Yang, Yi Chen, Yun Wu, Zihui Chi, and Huabei Jiang. 2024. "Image Enhancement Method for Photoacoustic Imaging of Deep Brain Tissue" Photonics 11, no. 1: 31. https://doi.org/10.3390/photonics11010031
APA StyleXie, Y., Wu, D., Wang, X., Wen, Y., Zhang, J., Yang, Y., Chen, Y., Wu, Y., Chi, Z., & Jiang, H. (2024). Image Enhancement Method for Photoacoustic Imaging of Deep Brain Tissue. Photonics, 11(1), 31. https://doi.org/10.3390/photonics11010031