Wavelength-Switchable 2 μm Single-Longitudinal-Mode Thulium-Doped Fiber Laser Based on Dual-Active Cavity and DLTCTR
Abstract
:1. Introduction
2. Operational Principle
2.1. Dual-Active Cavity Structure
2.2. All-Fiber Polarization-Rotation Structure
2.3. Operational Principle of SLM
3. Experimental Setup
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Hu, F.; Li, C.; Tian, Y.; Huang, C.; Zhang, J.; Xu, S. Generation of switchable multiwavelength solitons with wide wavelength spacing at 2 μm. Opt. Lett. 2019, 44, 2442–2445. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, X.; Wu, K.; Wu, D.; Dai, S.; Xu, T.; Nie, Q. All-fiber 2 μm thulium-doped mode-locked fiber laser based on MoSe2-saturable absorber. Opt. Fiber Technol. 2019, 47, 152–157. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Sheng, Q.; Sun, S.; Shi, C.; Fu, S.; Bai, X.; Fang, Q.; Shi, W.; Yao, J.-Q. Efficient multi-watt 1720 nm ring-cavity Tm-doped fiber laser. Opt. Express 2020, 28, 37910–37918. [Google Scholar] [CrossRef]
- Xu, K.; Li, H.; Liu, Y.; Wang, Y.; Tian, J.; Wang, L.; Du, J.; He, Z.; Song, Q. Optical fiber humidity sensor based on water absorption peak near 2-μm waveband. IEEE Photonics J. 2019, 11, 7101308. [Google Scholar] [CrossRef]
- Geng, J.; Wang, Q.; Lee, Y.; Jiang, S. Development of eye-safe fiber lasers near 2 μm. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 150–160. [Google Scholar] [CrossRef]
- Kalaycıoğlu, H.; Elahi, P.; Akçaalan, Ö.; Ilday, F.O. High-repetition-rate ultrafast fiber lasers for material processing. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 8800312. [Google Scholar]
- Walasik, W.; Traoré, D.; Amavigan, A.; Tench, R.E.; Delavaux, J.-M.; Pinsard, E. 2-μm narrow linewidth all-fiber DFB fiber Bragg grating lasers for Ho-and Tm-doped fiber-amplifier applications. J. Light. Technol. 2021, 39, 5096–5102. [Google Scholar] [CrossRef]
- Kapasi, D.P.; Eichholz, J.; McRae, T.; Ward, R.; Slagmolen, B.J.J.; Legge, S.; Hardman, K.S.; Altin, P.A.; McClelland, D.E. Tunable narrow-linewidth laser at 2 μm wavelength for gravitational wave detector research. Opt. Express 2020, 28, 3280–3288. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, B.; Liu, H.; Wei, S.; Mao, Q. Development of single-longitudinal-mode DBR fiber laser based on thulium-doped silica glass fiber. Chin. J. Quantum Electron. 2023, 40, 56–61. [Google Scholar]
- Zamzuri, A.K.; Ariannejad, M.M.; Samion, M.Z.; Tan, C.; Ismail, M.; Bayang, L.; Ahmad, H. Narrow bandwidth optimization using a polymer microring resonator in a thulium–holmium fiber laser cavity. Opt. Commun. 2020, 466, 125574. [Google Scholar] [CrossRef]
- Budarnykh, A.E.; Vladimirskaya, A.D.; Lobach, I.A.; Kablukov, S.I. Broad-range self-sweeping single-frequency linearly polarized Tm-doped fiber laser. Opt. Lett. 2018, 43, 5307–5310. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Kabakova, I.V.; Lefrancois, S.; Hudson, D.D.; He, S.; Eggleton, B.J. Hybrid Brillouin/thulium multiwavelength fiber laser with switchable single-and double-Brillouin-frequency spacing. Opt. Express 2014, 22, 31884–31892. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.U.; Zhang, H.; O’Callaghan, J.; Roycroft, B.; Kavanagh, N.; Thomas, K.; Gocalinska, A.; Chen, Y.; Bradley, T.; Hayes, J.R.; et al. 40 Gb/s WDM transmission over 1.15-km HC-PBGF using an InP-based Mach-Zehnder modulator at 2 μm. J. Light. Technol. 2016, 34, 1706–1711. [Google Scholar] [CrossRef]
- Qin, Q.; Li, T.; Yan, F.; Feng, T.; Sun, W.; Han, W.; Yang, D.; Wang, X.; Yu, C.; Wang, P.; et al. Demonstration of the first outdoor 2-μm-band real-time video transmission free-space optical communication system using a self-designed single-frequency fiber laser. J. Light. Technol. 2023, 41, 5275–5283. [Google Scholar] [CrossRef]
- Wang, W.; Meng, H.Y.; Wu, X.W.; Xiong, R.; Xue, H.C.; Tan, C.H.; Huang, X.G. A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser. Laser Phys. Lett. 2012, 10, 015104. [Google Scholar] [CrossRef]
- Tang, M.; Jiang, Y.; Li, H.; Zhao, Q.; Cao, M.; Mi, Y.; Jian, W.; Ren, W.; Ren, G. Multi-wavelength fiber laser based on dual-Sagnac comb filter for LP 11 modes output. J. Light. Technol. 2020, 38, 3745–3750. [Google Scholar] [CrossRef]
- Wang, Z.; Shang, J.; Xu, Y.; Qiao, Y.; Yu, S. Stable narrow-linewidth single-longitudinal mode laser by exploiting double subring resonator and self-injection loop. Opt. Fiber Technol. 2022, 68, 102775. [Google Scholar] [CrossRef]
- Yang, D.; Yan, F.; Feng, T.; Qin, Q.; Li, T.; Yu, C.; Wang, X.; Jiang, Y.; Kumamoto, K.; Suo, Y. Stable narrow-linewidth single-longitudinal-mode thulium-doped fiber laser by exploiting double-coupler-based double-ring filter. Infrared Phys. Technol. 2023, 129, 104568. [Google Scholar] [CrossRef]
- Tan, H.; Yan, F.; Feng, T.; Li, T.; Qin, Q.; Yang, D.; Guo, H.; Wang, X.; Wu, G.; Cai, Y.; et al. Highly stable single-longitudinal-mode erbium-doped fiber laser using dual-ring compound cavity filter and saturable absorber. Opt. Fiber Technol. 2024, 83, 103655. [Google Scholar] [CrossRef]
- Yang, D.; Yan, F.; Guo, Y.; Qin, Q.; Li, T.; Yu, C.; Wang, X.; Guo, H.; Cai, Y.; Ji, W.; et al. Suppression of intensity noise and phase noise for thulium-holmium co-doped fiber laser by self-injection locking. Opt. Express 2024, 32, 33521–33530. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Song, S.; Long, B. Compound four-cavity single-longitudinal mode fiber laser. Opt. Express 2024, 32, 7079–7089. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wei, J.K.; Chen, P.C.; Liaw, S.-K.; Chen, J.-K.; Yeh, C.-H. Eight-Wavelength Selectable Single-Longitudinal-Mode Fiber Laser Using 1 × 8 Arrayed Waveguide Grating and Passive Triple Subring Resonators. IEEE Photonics J. 2024, 16, 7101407. [Google Scholar] [CrossRef]
- Tao, L.; Wang, F.; Wu, Z.; Xia, G. Stable and Tunable PT-Symmetric Single-Longitudinal-Mode Fiber Laser Using a Nonreciprocal Sagnac Loop. IEEE Access 2023, 11, 23127–23135. [Google Scholar] [CrossRef]
- Huang, Q.; Yan, F.; Feng, T.; Yang, D.; Li, T.; Tan, H.; Peng, S.; Guo, H.; Wang, X. High OSNR single-longitudinal-mode thulium-doped fiber laser based on a cascaded dual-ring cavity filter. Infrared Phys. Technol. 2024, 140, 105417. [Google Scholar] [CrossRef]
- Soltanian, M.R.K.; Ahmad, H.; Khodaie, A.; Amiri, I.S.; Ismail, M.F.; Harun, S.W. A stable dual-wavelength Thulium-doped fiber laser at 1.9 μm using photonic crystal fiber. Sci. Rep. 2015, 5, 14537. [Google Scholar] [CrossRef]
- Sun, J.; Cheng, H.; Xu, L.; Fu, B.; Liu, X.; Zhang, H. Ag/MXene composite as a broadband nonlinear modulator for ultrafast photonics. ACS Photonics 2023, 10, 3133–3142. [Google Scholar] [CrossRef]
- Fu, B.; Sun, J.; Wang, C.; Shang, C.; Xu, L.; Li, J.; Zhang, H. MXenes: Synthesis, optical properties, and applications in ultrafast photonics. Small 2021, 17, 2006054. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, H.; Liu, J.; Chao, J.; Liu, T.; Zhang, H.; Wang, G.; Lyu, W.; Wageh, S.; Al-Hartomy, O.A.; et al. Integration and applications of nanomaterials for ultrafast photonics. Laser Photonics Rev. 2022, 16, 2200386. [Google Scholar] [CrossRef]
Wavelength/nm | LD1 | LD2 | Testing Time/min | Whether It Is in an SLM State | ||
---|---|---|---|---|---|---|
Pump Power/mW | OT/°C | Pump Power/mW | OT/°C | |||
λ1: 1967.66 | 2028 | 23.8 | / | / | 30 | Y |
λ2: 1964.58 | 2048 | 28 | / | / | 60 | Y |
λ3: 1959.48 | 2355 | 24.9 | / | / | 30 | Y |
λ4: 1964.36 | 2352 | 24.4 | / | / | 27 | Y |
λ5: 1935.26 | / | / | 6338.5 | 28.4 | 17 | Y |
λ6: 1945.22 | / | / | 6361 | 24.7 | 30 | Y |
λ7: 1933.95 | / | / | 6347.8 | 25.8 | 75 | Y |
λ8: 1938.37 | / | / | 6355.7 | 27.2 | 42 | Y |
λ9: 1943.80 | / | / | 6764.2 | 28.6 | 30 | Y |
λ10: 1962.82 | 2352 | 27.6 | 1319.0 | 28.5 | 30 | Y |
λ11: 1971.76 | 3193.6 | 25.8 | / | / | 30 | Y |
Integration Time (s) | 0.001 | 0.005 | 0.01 | 0.05 | 0.1 | 0.2 |
---|---|---|---|---|---|---|
Δv1 (kHz) | 91.82 | 1.25 × 103 | 2.78 × 103 | 35.89 × 103 | 109.10 × 103 | 811.80 × 103 |
Δv2 (kHz) | 85.84 | 0.63 × 103 | 1.85 × 103 | 20.56 × 103 | 68.70 × 103 | 248.00 × 103 |
Δv3 (kHz) | 72.55 | 0.93 × 103 | 2.87 × 103 | 38.71 × 103 | 167.80 × 103 | 870.00 × 103 |
Δv4 (kHz) | 113.68 | 1.6 × 103 | 4.38 × 103 | 68.86 × 103 | 467.40 × 103 | 1128.000 × 103 |
Δv5 (kHz) | 171.59 | 6.10 × 103 | 22.25 × 103 | 22.29 × 103 | 22.33 × 103 | 22.42 × 103 |
Δv6 (kHz) | 65.14 | 0.67 × 103 | 2.22 × 103 | 22.29 × 103 | 200.30 × 103 | 503.30 × 103 |
Δv7 (kHz) | 72.74 | 0.64 × 103 | 2.02 × 103 | 18.70 × 103 | 77.75 × 103 | 581.4 × 103 |
Δv8 (kHz) | 186.83 | 4.441 × 103 | 15.65 × 103 | 15.70 × 103 | 15.80 × 103 | 16.46 × 103 |
Δv9 (kHz) | 174.36 | 5.88 × 103 | 22.09 × 103 | 22.12 × 103 | 22.17 × 103 | 22.25 × 103 |
Δv10 (kHz) | 167.32 | 7.07 × 103 | 27.54 × 103 | 27.56 × 103 | 27.59 × 103 | 27.72 × 103 |
Δv11 (kHz) | 173.73 | 1.92 × 103 | 6.68 × 103 | 10.99 × 103 | 435.90 × 103 | 1860.00 × 103 |
Operating Waveband | Tuning Mechanism | Number of Wavelengths | Switchable Output Range (nm) | OSNR | Power Stability (dB) | Wavelength Stability (nm) | Linewidth (kHz) | Ref |
---|---|---|---|---|---|---|---|---|
C band | / | 1 | / | 65 | 0.28 | / | 0.25 | [21] |
C band | Tuning PC | 8 | 5.63 | ~60 | 0.01 | 0.005 | 2.5 | [22] |
C band | OTF | / | 30 | 43 | 2.42 | 0.006 | 0.68 | [23] |
2 μm waveband | / | 1 | / | ~75.10 | 0.685 | 0.01 | 11.82 | [24] |
1.9 μm waveband | NA | 2 | NA | 45 | 1 | NA | NA | [25] |
2 μm waveband | Tuning PC and LD | 11 | 37.81 | ~70.24 | 0.15 | 0.03 | 65 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Qin, Q.; Yan, F.; Yang, D.; Yu, C.; Hu, J.; Cao, X.; Xu, D.; Liu, P.; Guan, B.; et al. Wavelength-Switchable 2 μm Single-Longitudinal-Mode Thulium-Doped Fiber Laser Based on Dual-Active Cavity and DLTCTR. Photonics 2024, 11, 1031. https://doi.org/10.3390/photonics11111031
Wang P, Qin Q, Yan F, Yang D, Yu C, Hu J, Cao X, Xu D, Liu P, Guan B, et al. Wavelength-Switchable 2 μm Single-Longitudinal-Mode Thulium-Doped Fiber Laser Based on Dual-Active Cavity and DLTCTR. Photonics. 2024; 11(11):1031. https://doi.org/10.3390/photonics11111031
Chicago/Turabian StyleWang, Pengfei, Qi Qin, Fengping Yan, Dandan Yang, Chenhao Yu, Junjie Hu, Xiqing Cao, Darui Xu, Peng Liu, Biao Guan, and et al. 2024. "Wavelength-Switchable 2 μm Single-Longitudinal-Mode Thulium-Doped Fiber Laser Based on Dual-Active Cavity and DLTCTR" Photonics 11, no. 11: 1031. https://doi.org/10.3390/photonics11111031
APA StyleWang, P., Qin, Q., Yan, F., Yang, D., Yu, C., Hu, J., Cao, X., Xu, D., Liu, P., Guan, B., & Guo, Y. (2024). Wavelength-Switchable 2 μm Single-Longitudinal-Mode Thulium-Doped Fiber Laser Based on Dual-Active Cavity and DLTCTR. Photonics, 11(11), 1031. https://doi.org/10.3390/photonics11111031