Improving 795 nm Single-Frequency Laser’s Frequency Stability by Means of the Bright-State Spectroscopy with Rubidium Vapor Cell
Abstract
:1. Introduction
2. Theoretical Analysis
3. Experimental Setup
4. Experimental Result and Discussions
4.1. Optimization of the Bright-State Spectroscopy Parameters
4.2. Laser Frequency Locking and Frequency Stability Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butcher, R.J. Sub-Doppler laser spectroscopy. Opt. Quantum Electron. 1993, 25, 79. [Google Scholar] [CrossRef]
- Long, D.A.; Fleisher, A.J.; Plusquellic, D.F.; Hodges, J.T. Multiplexed sub-Doppler spectroscopy with an optical frequency comb. Phys. Rev. A 2016, 94, 061801. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, V.S.; Silander, I.; Rutkowski, L.; Soboń, G.; Axner, O.; Lehmann, K.K.; Foltynowicz, A. Sub-Doppler optical-optical double-resonance spectroscopy using a cavity-enhanced frequency comb probe. Nat. Commun. 2024, 15, 161. [Google Scholar] [CrossRef] [PubMed]
- Hänsch, T.W.; Shahin, I.S.; Schawlowänsch, A.L. High-resolution saturation spectroscopy of the sodium D lines with a pulsed tunable dye laser. Phys. Rev. Lett. 1971, 27, 707. [Google Scholar] [CrossRef]
- Hänsch, T.W.; Levenson, M.; Schawlow, A. Complete hyperfine structure of a molecular iodine line. Phys. Rev. Lett. 1971, 26, 946. [Google Scholar] [CrossRef]
- Pappas, P.G.; Burns, M.M.; Hinshelwood, D.D.; Feld, M.S.; Murnickänsch, D.E. Saturation spectroscopy with laser optical pumping in atomic barium. Phys. Rev. A 1980, 21, 1955. [Google Scholar] [CrossRef]
- Wieman, C.; Hänsch, T.W. Doppler-free laser polarization spectroscopy. Phys. Rev. Lett. 1976, 36, 1170. [Google Scholar] [CrossRef]
- Haroche, S.; Hartmann, F. Theory of saturated-absorption line shapes. Phys. Rev. A 1972, 6, 1280. [Google Scholar] [CrossRef]
- Kunz, P.D.; Heavner, T.P.; Jefferts, S.R. Polarization-enhanced absorption spectroscopy for laser stabilization. Appl. Opt. 2013, 52, 8048. [Google Scholar] [CrossRef] [PubMed]
- Negnevitsky, V.; Turner, L.D. Wideband laser locking to an atomic reference with modulation transfer spectroscopy. Opt. Express 2013, 21, 3103. [Google Scholar] [CrossRef] [PubMed]
- Shirley, J.H. Modulation transfer processes in optical heterodyne saturation spectroscopy. Opt. Lett. 1982, 7, 537. [Google Scholar] [CrossRef] [PubMed]
- MacAdam, K.B.; Steinbach, A.; Wieman, C. A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys. 1992, 60, 1098. [Google Scholar] [CrossRef]
- Hafiz, M.A.; Coget, G.; Clercq, E.D.; Boudot, R. Doppler-free spectroscopy on the Cs D1 line with a dual-frequency laser. Opt. Lett. 2016, 41, 2982. [Google Scholar] [CrossRef] [PubMed]
- Brazhnikov, D.; Petersen, M.; Coget, G.; Passilly, N.; Maurice, V.; Gorecki, C.; Boudot, R. Dual-frequency sub-Doppler spectroscopy: Extended theoretical model and microcell-based experiments. Phys. Rev. A 2019, 99, 062508. [Google Scholar] [CrossRef]
- Li, Q.; Yun, P.; Yang, T.; Hao, Q.; Zhang, S.; Gu, S. Noise suppression by differential detection of simultaneous electromagnetically induced transparency and absorption in counterpropagating bichromatic light. New J. Phys. 2023, 25, 103039. [Google Scholar] [CrossRef]
- Taichenachev, A.V.; Yudin, V.I.; Velichansky, V.L.; Kargapoltsev, S.V.; Wynands, R.; Kitching, J.; Hollberg, L. High-contrast dark resonances on the D1 line of alkali metals in the field of counterpropagating waves. JETP Lett. 2004, 80, 236. [Google Scholar] [CrossRef]
- Hafiz, M.A.; Brazhnikov, D.; Coget, G.; Taichenachev, A.; Yudin, V.; Clercq, E.D.; Boudot, R. High-contrast sub-Doppler absorption spikes in a hot atomic vapor cell exposed to a dual-frequency laser field. New J. Phys. 2017, 19, 073028. [Google Scholar] [CrossRef]
- Breschi, E.; Kazakov, G.; Lammegger, R.; Mileti, G.; Matisov, B.; Windholz, L. Quantitative study of the destructive quantum-interference effect on coherent population trapping. Phys. Rev. A 2009, 79, 063837. [Google Scholar] [CrossRef]
- Riley, W.J.; Howe, D.A. Handbook of Frequency Stability Analysis; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2008.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Yang, Y.; Zhang, L.; Li, Y.; Wang, J. Improving 795 nm Single-Frequency Laser’s Frequency Stability by Means of the Bright-State Spectroscopy with Rubidium Vapor Cell. Photonics 2024, 11, 1165. https://doi.org/10.3390/photonics11121165
Zhao J, Yang Y, Zhang L, Li Y, Wang J. Improving 795 nm Single-Frequency Laser’s Frequency Stability by Means of the Bright-State Spectroscopy with Rubidium Vapor Cell. Photonics. 2024; 11(12):1165. https://doi.org/10.3390/photonics11121165
Chicago/Turabian StyleZhao, Junye, Yongbiao Yang, Lulu Zhang, Yang Li, and Junmin Wang. 2024. "Improving 795 nm Single-Frequency Laser’s Frequency Stability by Means of the Bright-State Spectroscopy with Rubidium Vapor Cell" Photonics 11, no. 12: 1165. https://doi.org/10.3390/photonics11121165
APA StyleZhao, J., Yang, Y., Zhang, L., Li, Y., & Wang, J. (2024). Improving 795 nm Single-Frequency Laser’s Frequency Stability by Means of the Bright-State Spectroscopy with Rubidium Vapor Cell. Photonics, 11(12), 1165. https://doi.org/10.3390/photonics11121165