High-Energy Injection-Seeded Single-Frequency Er:YAG Laser at 1645 nm Pumped by a 1532 nm Fiber Laser
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoneman, R.C.; Hartman, R.; Malm, A.I.R.; Gatt, P. Coherent laser radar using eyesafe Er: YAG laser transmitters. Laser Radar Technology and Applications X; SPIE: Bellingham, WA, USA, 2005; Volume 5791, pp. 167–174. [Google Scholar]
- Buck, J.; Malm, A.; Zakel, A.; Krause, B.; Tiemann, B. Multi-function coherent ladar 3D imaging with S3. In Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications; SPIE: Bellingham, WA, USA, 2007; Volume 6739, pp. 134–144. [Google Scholar]
- Cezard, N.; Le Mehaute, S.; Le Gouët, J.; Valla, M.; Goular, D.; Fleury, D.; Planchat, C.; Dolf-Bouteyre, A. Performance assessment of a coherent DIAL-Doppler fber lidar at 1645 nm for remote sensing of methane and wind. Opt. Express 2020, 28, 22345–22357. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.X.; Gao, C.Q.; Lin, Z.; Wang, Q.; Gao, M.W.; Huang, S.; Chen, C.Y. 1645 nm coherent Doppler wind lidar with a single-frequency Er:YAG laser. Opt. Express 2020, 28, 14694–14704. [Google Scholar] [CrossRef] [PubMed]
- Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.; Deniel, C. MERLIN: A space-based methane monitor. In Lidar Remote Sensing for Environmental Monitoring XII; SPIE: Bellingham, WA, USA, 2011; Volume 8159, p. 815908. [Google Scholar]
- Park, Y.K.; Giuliani, G.; Byer, R.L. Stable single-axial-mode operation of an unstable-resonator Nd: YAG oscillator by injection locking. Opt. Lett. 1980, 5, 96–98. [Google Scholar] [CrossRef] [PubMed]
- Cong, Z.H.; Liu, Z.J.; Qin, Z.G.; Zhang, X.Y.; Wang, S.H.; Rao, H.; Fu, Q. RTP Q-switched single-longitudinalmode Nd:YAG laser with a twisted-mode cavity. Appl. Opt. 2015, 54, 5143–5146. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.W.; Ju, Y.L.; Wu, J.Z.; Yan, D.; Duan, X.M.; Yao, B.Q.; Dai, T.Y. Seed-injection Er: LuAG single-frequency, pulsed laser at 1650 nm. Infrared Phys. Technol. 2024, 139, 105325. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, C.Q.; Na, Q.X.; Zhang, Y.X.; Ye, Q.; Gao, M.W. Single-frequency injection-seeded Q-switched Ho: YAG laser. Appl. Phys. Express 2017, 10, 042701. [Google Scholar] [CrossRef]
- Long, J.X.; Li, G.; Yang, B.; Yao, H.Q.; Ding, J.Y. Injection-Seeded 500 Hz Repetition Rate High Peak Power Single-Frequency Nd: YAG Laser for Mid-Infrared Generation. J. Russ. Laser Res. 2018, 39, 600–607. [Google Scholar] [CrossRef]
- Yan, D.; Yuan, Y.; Wang, Y.P.; Fan, J.W.; Wu, J.Z.; Duan, X.M.; Li, S.N.; Dai, T.Y.; Ju, Y.L. High-energy, alignment-insensitive, injection-seeded Q-switched Ho:yttrium aluminum garnet single-frequency laser. High Power Laser Sci. Eng. 2023, 11, e66. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, X.; Yao, B.Q.; Dai, T.Y.; Duan, X.M.; Ju, Y.L. Single-frequency, Q-switched Er: YAG at room temperature injection-seeded by an Er: YAG nonplanar ring oscillator. Laser Phys. 2014, 24, 045809. [Google Scholar] [CrossRef]
- Gao, C.Q.; Shi, Y.; Ye, Q.; Wang, S.; Na, Q.X.; Wang, Q.; Gao, M.W. 10 mJ single-frequency, injection-seeded Q-switched Er: YAG laser pumped by a 1470 nm fiber-coupled LD. Laser Phys. Lett. 2018, 15, 025003. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, C.Q.; Wang, Q.; Na, Q.X.; Zhang, M.; Gao, M.W.; Huang, S. 1 kHz single-frequency, injection-seeded Er: YAG laser with an optical feedback. Chin. Opt. Lett. 2019, 17, 031402. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Q.; Zhang, M.; Chen, C.Y.; Wang, K.X.; Gao, M.W.; Gao, C.Q. A 3-kHz Er: YAG single-frequency laser with a ‘triple-reflection’ configuration on a piezoelectric actuator. Chin. Phys. B 2020, 29, 084204. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Ju, Y.L. Injection-seeded Q-switched laser based on a double corner cube retroreflector ring cavity. Opt. Express 2021, 29, 41954–41963. [Google Scholar] [CrossRef]
- Fan, J.W.; Wu, J.Z.; Ju, Y.L.; Yan, D.; Yang, X.B.; Yuan, Y.; Duan, X.M.; Dai, T.Y. 500 Hz single-frequency, pulsed Er: YAG laser in the double corner cube retroreflector resonator. Infrared Phys. Technol. 2023, 134, 104907. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, C.Q.; Wang, S.; Li, S.H.; Song, R.; Zhang, M.; Gao, M.W.; Wang, Q. High-energy, single-frequency, Q-switched Er:YAG laser with a double-crystals-end-pumping architecture. Opt. Express 2019, 27, 2671–2680. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Wang, Q.; Song, R.; Hou, F.F.; Gao, M.W.; Gao, C.Q. Laser diode pumped high-energy single-frequency Er: YAG laser with hundreds of nanoseconds pulse duration. Chin. Opt. Lett. 2020, 18, 031401. [Google Scholar] [CrossRef]
- Chen, C.Y.; Gao, C.Q.; Wang, Q. Injection-seeded 10 kHz repetition rate Er: YAG solid-state laser with single-frequency pulse energy more than 1 mJ. Opt. Express 2022, 30, 16044–16052. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.W.; Yuen, E.H.; Fry, E.S. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd: YAG lasers. Opt. Lett. 1986, 11, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.A.; Bai, Z.X.; Jin, D.; Qi, Y.Y.; Ding, J.; Yan, B.Z.; Wang, Y.L.; Lv, Z.W.; Mildren, R.P. Narrow laser-linewidth measurement using short delay self-heterodyne interferometry. Opt. Express 2022, 30, 30600–30610. [Google Scholar] [CrossRef] [PubMed]
References | Years | Gain Medium | Pumping Source | Beam Quality |
---|---|---|---|---|
[18] | 2019 | double Er:YAG | 1470 nm LD + 1532 nm fiber laser | 1.27, 1.30 |
[4] | 2020 | Er:YAG cemamics | 1470 nm LD + 1532 nm fiber laser | 1.51, 1.55 |
[19] | 2020 | double Er:YAG | 1470 nm LD | 1.37, 1.09 |
[20] | 2022 | Er:YAG | 1470 nm LD + 1532 nm fiber laser | \ |
[17] | 2023 | Er:YAG | both 1532 nm fiber laser | 1.2, 1.24 |
This paper | 2024 | Er:YAG | both 1532 nm fiber laser | 1.18, 1.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Ju, Y.; Fan, J.; Zhao, Y.; Yang, K.; Geng, L.; Cai, Y.; Song, L.; Zhuang, Y.; Wu, S.; et al. High-Energy Injection-Seeded Single-Frequency Er:YAG Laser at 1645 nm Pumped by a 1532 nm Fiber Laser. Photonics 2024, 11, 752. https://doi.org/10.3390/photonics11080752
Wu J, Ju Y, Fan J, Zhao Y, Yang K, Geng L, Cai Y, Song L, Zhuang Y, Wu S, et al. High-Energy Injection-Seeded Single-Frequency Er:YAG Laser at 1645 nm Pumped by a 1532 nm Fiber Laser. Photonics. 2024; 11(8):752. https://doi.org/10.3390/photonics11080752
Chicago/Turabian StyleWu, Jiaze, Youlun Ju, Jiawei Fan, Yiming Zhao, Kun Yang, Lijie Geng, Yuanxue Cai, Lei Song, Yaming Zhuang, Shuyun Wu, and et al. 2024. "High-Energy Injection-Seeded Single-Frequency Er:YAG Laser at 1645 nm Pumped by a 1532 nm Fiber Laser" Photonics 11, no. 8: 752. https://doi.org/10.3390/photonics11080752
APA StyleWu, J., Ju, Y., Fan, J., Zhao, Y., Yang, K., Geng, L., Cai, Y., Song, L., Zhuang, Y., Wu, S., & Duan, X. (2024). High-Energy Injection-Seeded Single-Frequency Er:YAG Laser at 1645 nm Pumped by a 1532 nm Fiber Laser. Photonics, 11(8), 752. https://doi.org/10.3390/photonics11080752