Design of Gallium Nitride-Based Photodetector for Enhanced Accuracy in Solar Ultraviolet Index Monitoring
Abstract
:1. Introduction
2. Novel UV Detector
2.1. Novel Materials and Design Methods for UV Detectors
2.2. Structure and Parameters of the New UV Detector
3. Design Results and Analysis
3.1. Simulation Parameter Setting
3.2. Simulation Results
4. Discussion of the Results
4.1. Comparison of the Spectral Responses
4.2. Experimental Setup
4.2.1. Test Spectra
4.2.2. UVI Calculation
4.3. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bojilova, R.; Mukhtarov, P. Dependence of the Index of Biologically Active Ultraviolet Radiation on the Season and Time of Day. Atmosphere 2022, 13, 1455. [Google Scholar] [CrossRef]
- Song, W.; Dai, X. The Gold Nanoparticles Enhanced ZnO/GaN UV Detector. IEEE J. Electron Devices Soc. 2022, 10, 847–853. [Google Scholar] [CrossRef]
- Barnes, P.W.; Robson, T.M. Interactive effects of changes in UV radiation and climate on terrestrial ecosystems, biogeochemical cycles, and feedbacks to the climate system. Photochem. Photobiol. Sci. 2023, 22, 1049–1091. [Google Scholar]
- John, S.M.; Trakatelli, M. Non-melanoma skin cancer by solar UV: The neglected occupational threat. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Zanoletti, A. Skin protection from solar ultraviolet radiation using natural compounds: A review. Environ. Chem. Lett. 2024, 22, 273–295. [Google Scholar] [CrossRef]
- Grandahl, K.; Eriksen, P. Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers. Photochem. Photobiol. 2018, 94, 807–814. [Google Scholar] [CrossRef]
- Paulescu, E.; Iman, V.; Dughir, C.; Stefu, N.; Paulescu, M. A Simplified but Accurate UV Index Model. In Proceedings of the 17th Physics Conference (PA), Timisoara, Romania, 25–27 May 2017. [Google Scholar]
- Mazzillo, M.; Shukla, P. 4H-SiC Schottky Photodiode Based Demonstrator Board for UV-Index Monitoring. IEEE Sens. J. 2011, 11, 377–381. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, C. Integrated Gallium Nitride Nonlinear Photonics. Laser Photonics Rev. 2022, 16, 2100071. [Google Scholar] [CrossRef]
- Makinudin, A.; Haaziq, A. Impact of Crystallinity towards the Performance of Semi-Polar (11–22) GaN UV Photodetector. Mater. Lett. 2021, 286, 129244. [Google Scholar] [CrossRef]
- Wen, F.; Tutuc, E. Strained SixGe1−x-Ge-Si core-double-shell nanowire heterostructures for si-multaneous hole and electron mobility enhancement. Appl. Phys. Lett. 2018, 113, 113102. [Google Scholar] [CrossRef]
- Tang, M. Characteristics, application and development trend of the third-generation semiconductor. Appl. Comput. Eng. 2023, 7, 41–46. [Google Scholar] [CrossRef]
- Xu, J.S.; Li, C.F. Identifying single spin defects in gallium nitride. Nat. Mater. 2024, 23, 447–448. [Google Scholar] [CrossRef] [PubMed]
- Lihua, Z.; Qihuan, T. Solar spectrum distribution in solar radiation test standard. Equip. Environ. Eng. 2017, 14, 65–70. [Google Scholar]
- Webb, A.R.; Slaper, H.; Schmalwieser, A.W. Know Your Standard: Clarifying the CIE Erythema Action Spectrum. Photochem. Photobiol. 2011, 87, 483–486. [Google Scholar] [CrossRef]
- Zhou, S.; Liao, Z. High-Power AlGaN-Based Ultrathin Tunneling Junction Deep Ultraviolet Light-Emitting Diodes. Laser Photonics Rev. 2024, 18, 2300464. [Google Scholar] [CrossRef]
- Fan, B.; Zhao, X. Monolithically Integrating III-Nitride Quantum Structure for Full-Spectrum White LED via Bandgap Engineering Heteroepitaxial Growth. Laser Photonics Rev. 2023, 17, 2200455. [Google Scholar] [CrossRef]
- Zhou, S.; Zhao, X. Application of Patterned Sapphire Substrate for III-Nitride Light-Emitting Diodes. Nanoscale 2022, 14, 4887–4907. [Google Scholar] [CrossRef]
- Zhou, S.; Wan, Z.; Zhao, X. InGaN Quantum Well with Gradually Varying Indium Content for High-Efficiency GaN-Based Green Light-Emitting Diodes. Opt. Lett. 2022, 47, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Razeen, A.; Patil, D. Enhanced Performance of Metal-Semiconductor-Metal UV Photodetectors on Algan/Gan Hemt Structure via Periodic Nanohole Patterning. Adv. Mater. Interfaces 2024, 11, 2300726. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y. GaN MSM structure UV photodetector detector based on nonplanar Si substrate and its performance optimization. Semicond. Sci. Technol. 2022, 37, 105020. [Google Scholar] [CrossRef]
- Lv, S.; Wang, S.; Li, L. Gallium Nitride Based Electrode for High-Temperature Supercapacitors. Adv. Sci. 2023, 10, 2300780. [Google Scholar] [CrossRef]
- Su, Y.K.; Peng, S.M. Ultraviolet ZnO Nanorod Photosensors. Langmuir 2010, 26, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Mu, F.W. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices. ACS Appl. Mater. Interfaces 2020, 12, 8376–8384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Feng, M. Performance improvement of GaN-based microdisk lasers by using a PEALD-SiO2 passivation layer. Opt. Express 2023, 31, 20212–20220. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; You, H. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci. Appl. 2021, 10, 244. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Guo, J.; Chao, G.; Feng, J. Realization of erythemal UV detector using antiparallel connection of the two GaN based photodiodes. In Proceedings of the International Symposium on Advanced Optical Manufacturing and Testing Technologies (AOMATT), Hefei, China, 20 May 2019. [Google Scholar]
- Voevodin, V.I.; Brudnyi, V.N.; Sarkisov, Y.S.; Su, X.; Sarkisov, S.Y. Electrical Relaxation and Transport Properties of ZnGeP2 and 4H-SiC Crystals Measured with Terahertz Spectroscopy. Photonics 2023, 10, 827. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, D.; Min, T.; Wang, J.; Chen, G.; Wang, H.-X. Photovoltaic Three-Dimensional Diamond UV Photodetector with Low Dark Current and Fast Response Speed Fabricated by Bottom-Up Method. IEEE Electron Device Lett. 2019, 40, 1186–1189. [Google Scholar] [CrossRef]
- Suzuki, N. Nitride Semiconductor Devices: Principles and Simulation, 1st ed.; Piprek, J., Ed.; Wiley: Newark, NJ, USA, 2007; pp. 405–422. [Google Scholar]
- Wang, j.; Guo, J.; Wang, G.; Xie, F.; Jin, L. Improvement of Responsivity of GaN-Based p-i-n Ultraviolet Photodetector by Inserting a Delta Doped Layer in Active Region. In Proceedings of the AOPC 2017: Optical Sensing and Imaging Technology and Applications, Beijing, China, 4–6 June 2017. [Google Scholar]
- Sentaurus Device an Advanced Multidimensional (1D/2D/3D) Device Simulator. Available online: https://www.synopsys.com/manufacturing/tcad/device-simulation/sentaurus-device.html (accessed on 10 July 2024).
- Abdel Baset, Y.; Hamed, S.; Reda, S.; Farag, H.; Ghany, H.; Faramawy, S. Gallium Phosphide (GaP) as a Standard Ultraviolet Index Detector: Response Comparison and Measurements. Phys. Scr. 2023, 99, 10. [Google Scholar] [CrossRef]
- Li, J.; Gao, J.; Ou, B. GaN p-i-n ultraviolet photodetectors grown on homogenous GaN bulk substrates. Solid-State Electron. 2022, 197, 108419. [Google Scholar] [CrossRef]
- ISO/CIE 19476:2014(E); Characterization of the Performance of Illuminance Meters and Luminance Meters. International Organization for Standardization: Geneva, Switzerland, 2014. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso-cie:19476:ed-1:v1:en (accessed on 5 March 2024).
- Kosmopoulos, P.G.; Kazadzis, S. Real-time UV index retrieval in Europe using Earth observation-based techniques: System description and quality assessment. Remote Sens. 2021, 14, 5657–5699. [Google Scholar] [CrossRef]
- Jin, Y.M. Observation and Research on Terrestrial and Atmospheric Solar Radiation in Tibet. Master’s Thesis, Tibet University, Lhasa, China, 2019. [Google Scholar]
- Wang, B. Action spectrum of ultraviolet rays and its measurement. Sol. Energy 2004, 1, 10–11. [Google Scholar]
- Yeo, K.L.; Krivova, N.A. EMPIRE: A Robust Empirical Reconstruction of Solar Irradiance Variability. J. Geophys. Res. 2017, 122, 3888–3914. [Google Scholar] [CrossRef]
- Romanhole, R.C.; Ataide, J.A.; Moriel, P.; Mazzola, P.G. Update on ultraviolet A and B radiation generated by the sun and artificial lamps and their effects on skin. Int. J. Cosmet. Sci. 2015, 37, 366–370. [Google Scholar] [CrossRef] [PubMed]
Ultraviolet Index | Potential Impact on Human Body (Sunburn Time/min) |
---|---|
0–2 | 100~180 |
3–4 | 60–100 |
5–6 | 30–60 |
7–9 | 20–40 |
10+ | <20 |
Parameters | Units | Si | SiC | GaN |
---|---|---|---|---|
Eg | eV | 1.12 | 3.26 | 3.39 |
μn | cm2/V·s | 1400 | 950 | 1500–2000 |
Vsat | 107 cm/s | 1 | 2 | 2.5 |
Parameters | Value | Units |
---|---|---|
Temperature | 300 | K |
Band gap of GaN | 3.42 | eV |
Electron SRH lifetime | 10 | ns |
Hole SRH lifetime | 10 | ns |
Electron effective mass (relative) | 0.222 | -- |
Hole effective mass (relative) | 1.0 | -- |
Electron mobility | 480 | cm2/Vs |
Hole mobility | 20 | cm2/Vs |
Type of Detector | Covering Range (nm) | Mismatch Factor |
---|---|---|
Our proposed detector | 250 nm–400 nm | 8.63% |
The Apogee UV detector | 290 nm–390 nm | 36.58% |
XAR-UAB Radiometer | 210 nm–380 nm | 21.15% |
Solarimeter 5.0 Radiometer | 250 nm–390 nm | 13.06% |
GaN p-i-n ultraviolet photodetectors | 250 nm–450 nm | 101.18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, W.; Liu, T.; Xu, Y.; He, D.; Wang, J. Design of Gallium Nitride-Based Photodetector for Enhanced Accuracy in Solar Ultraviolet Index Monitoring. Photonics 2024, 11, 812. https://doi.org/10.3390/photonics11090812
Li H, Li W, Liu T, Xu Y, He D, Wang J. Design of Gallium Nitride-Based Photodetector for Enhanced Accuracy in Solar Ultraviolet Index Monitoring. Photonics. 2024; 11(9):812. https://doi.org/10.3390/photonics11090812
Chicago/Turabian StyleLi, Hanlin, Wenhao Li, Tianxiang Liu, Yiman Xu, Dongze He, and Jun Wang. 2024. "Design of Gallium Nitride-Based Photodetector for Enhanced Accuracy in Solar Ultraviolet Index Monitoring" Photonics 11, no. 9: 812. https://doi.org/10.3390/photonics11090812
APA StyleLi, H., Li, W., Liu, T., Xu, Y., He, D., & Wang, J. (2024). Design of Gallium Nitride-Based Photodetector for Enhanced Accuracy in Solar Ultraviolet Index Monitoring. Photonics, 11(9), 812. https://doi.org/10.3390/photonics11090812