Measured and Predicted Speckle Correlation from Diffractive Metasurface Diffusers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Processing/Fabrication
2.2. Speckle Contrast Definition
2.3. FFT Correlation Function Definition and Method of Use
2.4. Simulation Setup
2.5. Measurement Setup
3. Results
3.1. Reduction of Speckle Contrast through an Increase in Divergence Angle of Input Beam, as Well as the Benefits of VCSEL Illumination in Reducing Speckle Contrast
3.1.1. Beam Shape, Divergence Angle and Multiple Emitters Can Be Used to Reduce Speckle Contrast
3.1.2. Variation of Speckle Contrast across Profile Decreases as Divergence Angle Increases
3.2. Cross-Correlation Study of Speckle Patterns Shows the Deterministic Nature of the Speckle Pattern We Observed in Simulation Is Lost in Measurements
3.2.1. Speckle Pattern Must Be Separated from Diffuser Profile to Track the Similarity between Speckles Obtained from Profiles with Different Illumination Conditions
3.2.2. Simulated Speckle Patterns Show Systematic Shift According to Lateral Offset and Divergence of the Light Source, but the Shift Is Not Reproducible in the Analysis of Measured Speckle Patterns
3.2.3. Cross-Correlation Rejects the Notion That the Detailed Simulated and Measured Speckles Patterns Can Be Related
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, H.; Fang, X.; Jang, J.; Bürger, J.; Rho, J.; Maier, S.A. Complex-Amplitude Metasurface-Based Orbital Angular Momentum Holography in Momentum Space. Nat. Nanotechnol. 2020, 15, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Capasso, F. Metalenses: Versatile Multifunctional Photonic Components. Science 2017, 358, eaam8100. [Google Scholar] [CrossRef] [PubMed]
- Balthasar Mueller, J.P.; Rubin, N.A.; Devlin, R.C.; Groever, B.; Capasso, F. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. Phys. Rev. Lett. 2017, 118, 113901. [Google Scholar] [CrossRef]
- Egede Johansen, V.; Gür, U.M.; Martínez-Llinás, J.; Fly Hansen, J.; Samadi, A.; Skak Vestergaard Larsen, M.; Nielsen, T.; Mattinson, F.; Schmidlin, M.; Mortensen, N.A.; et al. Nanoscale Precision Brings Experimental Metalens Efficiencies on Par with Theoretical Promises. Commun. Phys. 2024, 7, 123. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Capasso, F. Flat Optics with Dispersion-Engineered Metasurfaces. Nat. Rev. Mater. 2020, 5, 604–620. [Google Scholar] [CrossRef]
- Ren, H.; Briere, G.; Fang, X.; Ni, P.; Sawant, R.; Héron, S.; Chenot, S.; Vézian, S.; Damilano, B.; Brändli, V.; et al. Metasurface Orbital Angular Momentum Holography. Nat. Commun. 2019, 10, 2986. [Google Scholar] [CrossRef]
- Sroor, H.; Huang, Y.-W.; Sephton, B.; Naidoo, D.; Vallés, A.; Ginis, V.; Qiu, C.-W.; Ambrosio, A.; Capasso, F.; Forbes, A. High-Purity Orbital Angular Momentum States from a Visible Metasurface Laser. Nat. Photonics 2020, 14, 498–503. [Google Scholar] [CrossRef]
- Jing, X.; Li, Y.; Li, J.; Wang, Y.; Huang, L. Active 3D Positioning and Imaging Modulated by Single Fringe Projection with Compact Metasurface Device. Nanophotonics 2023, 12, 1923–1930. [Google Scholar] [CrossRef]
- Tan, S.; Yang, F.; Boominathan, V.; Veeraraghavan, A.; Naik, G.V. 3D Imaging Using Extreme Dispersion in Optical Metasurfaces. ACS Photonics 2021, 8, 1421–1429. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A. LIDAR and Beam Steering Tailored by Neuromorphic Metasurfaces Dipped in a Tunable Surrounding Medium. Photonics 2021, 8, 65. [Google Scholar] [CrossRef]
- Li, N.; Ho, C.P.; Xue, J.; Lim, L.W.; Chen, G.; Fu, Y.H.; Lee, L.Y.T. A Progress Review on Solid-State LiDAR and Nanophotonics-Based LiDAR Sensors. Laser Photonics Rev. 2022, 16, 2100511. [Google Scholar] [CrossRef]
- Park, J.; Jeong, B.G.; Kim, S.I.; Lee, D.; Kim, J.; Shin, C.; Lee, C.B.; Otsuka, T.; Kyoung, J.; Kim, S.; et al. All-Solid-State Spatial Light Modulator with Independent Phase and Amplitude Control for Three-Dimensional LiDAR Applications. Nat. Nanotechnol. 2021, 16, 69–76. [Google Scholar] [CrossRef]
- Yuan, W.; Li, L.-H.; Lee, W.-B.; Chan, C.-Y. Fabrication of Microlens Array and Its Application: A Review. Chin. J. Mech. Eng. 2018, 31, 16. [Google Scholar] [CrossRef]
- Xu, Z.; Dong, Y.; Tseng, C.-K.; Hu, T.; Tong, J.; Zhong, Q.; Li, N.; Sim, L.; Lai, K.H.; Lin, Y.; et al. CMOS-Compatible All-Si Metasurface Polarizing Bandpass Filters on 12-Inch Wafers. Opt. Express 2019, 27, 26060–26069. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zhong, Q.; Li, N.; Dong, Y.; Xu, Z.; Fu, Y.H.; Li, D.; Bliznetsov, V.; Zhou, Y.; Lai, K.H.; et al. CMOS-Compatible a-Si Metalenses on a 12-Inch Glass Wafer for Fingerprint Imaging. Nanophotonics 2020, 9, 823–830. [Google Scholar] [CrossRef]
- Park, J.-S.; Zhang, S.; She, A.; Chen, W.T.; Lin, P.; Yousef, K.M.A.; Cheng, J.-X.; Capasso, F. All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography. Nano Lett. 2019, 19, 8673–8682. [Google Scholar] [CrossRef]
- Park, J.-S.; Lim, S.W.D.; Amirzhan, A.; Kang, H.; Karrfalt, K.; Kim, D.; Leger, J.; Urbas, A.; Ossiander, M.; Li, Z.; et al. All-Glass 100 Mm Diameter Visible Metalens for Imaging the Cosmos. ACS Nano 2024, 18, 3187–3198. [Google Scholar] [CrossRef]
- Akram, M.N.; Chen, X. Speckle Reduction Methods in Laser-Based Picture Projectors. Opt. Rev. 2016, 23, 108–120. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications; Roberts and Company Publishers: Greenwood Village, CO, USA, 2007; ISBN 978-0-9747077-9-2. [Google Scholar]
- Chen, H.-A.; Pan, J.-W.; Yang, Z.-P. Speckle Reduction Using Deformable Mirrors with Diffusers in a Laser Pico-Projector. Opt. Express 2017, 25, 18140–18151. [Google Scholar] [CrossRef] [PubMed]
- Kubota, S.; Goodman, J. Very Efficient Speckle Contrast Reduction Realized by Moving Diffuser Device. Appl. Opt. 2010, 49, 4385–4391. [Google Scholar] [CrossRef]
- Pan, J.-W.; Shih, C.-H. Speckle Reduction and Maintaining Contrast in a LASER Pico-Projector Using a Vibrating Symmetric Diffuser. Opt. Express 2014, 22, 6464–6477. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.; Qianli, M.A.; Flannigan, L.; Xu, C.-Q. Laser Speckle Reduction Utilized by Lens Vibration for Laser Projection Applications. Eng. Res. Express 2019, 1, 015036. [Google Scholar] [CrossRef]
- Akram, M.N.; Tong, Z.; Ouyang, G.; Chen, X.; Kartashov, V. Laser Speckle Reduction Due to Spatial and Angular Diversity Introduced by Fast Scanning Micromirror. Appl. Opt. 2010, 49, 3297. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.-K.-T.; Subramaniam, S.; Le, C.; Kaur, S.; Kalicinski, S.; Ekwińska, M.; Halvorsen, E.; Akram, M. Design, Modeling, and Characterization of a Microelectromechanical Diffuser Device for Laser Speckle Reduction. J. Microelectromech. Syst. 2014, 23, 117–127. [Google Scholar] [CrossRef]
- Yang, N.; Li, Z.; Li, F.; Lang, T.; Guan, X. Record-High Efficiency Speckle Suppression in Multimode Fibers Using Cascaded Cylindrical Piezoelectric Ceramics. Photonics 2024, 11, 234. [Google Scholar] [CrossRef]
- Farrokhi, H.; Rohith, T.M.; Boonruangkan, J.; Han, S.; Kim, H.; Kim, S.-W.; Kim, Y.-J. High-Brightness Laser Imaging with Tunable Speckle Reduction Enabled by Electroactive Micro-Optic Diffusers. Sci. Rep. 2017, 7, 15318. [Google Scholar] [CrossRef]
- Kartashov, V.; Akram, M.N. Speckle Suppression in Projection Displays by Using a Motionless Changing Diffuser. J. Opt. Soc. Am. A 2010, 27, 2593. [Google Scholar] [CrossRef]
- Lo, C.-K.; Pan, J.-W. Speckle Reduction with Fast Electrically Tunable Lens and Holographic Diffusers in a Laser Projector. Opt. Commun. 2020, 454, 124301. [Google Scholar] [CrossRef]
- Gao, W.; Ma, S.; Chen, X. Speckle Reduction in Line Scan Laser Display System by Static Diffuser with 2D Binary Code. Chin. Opt. Lett. 2012, 10, 4. [Google Scholar] [CrossRef]
- Trisnadi, J.I. Hadamard Speckle Contrast Reduction. Opt. Lett. 2004, 29, 11–13. [Google Scholar] [CrossRef]
- Seurin, J.-F.; Xu, G.; Khalfin, V.; Miglo, A.; Wynn, J.D.; Pradhan, P.; Ghosh, C.L.; D’Asaro, L.A. Progress in High-Power High-Efficiency VCSEL Arrays. In Vertical-Cavity Surface-Emitting Lasers XIII; Choquette, K.D., Lei, C., Eds.; SPIE: San Jose, CA, USA, 2009; p. 722903. [Google Scholar]
- Seurin, J.-F.; Ghosh, C.L.; Khalfin, V.; Miglo, A.; Xu, G.; Wynn, J.D.; Pradhan, P.; D’Asaro, L.A. High-Power High-Efficiency 2D VCSEL Arrays. In Vertical-Cavity Surface-Emitting Lasers XII; Lei, C., Guenter, J.K., Eds.; SPIE: San Jose, CA, USA, 2008; p. 690808. [Google Scholar]
- Gerhberg, R.; Saxton, W. A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Picture. Optik 1972, 35, 237–246. [Google Scholar]
- Furukawa, A.; Ohse, N.; Sato, Y.; Imanishi, D.; Wakabayashi, K.; Ito, S.; Tamamura, K.; Hirata, S. Effective Speckle Reduction in Laser Projection Displays. In Proceedings of the Emerging Liquid Crystal Technologies III; SPIE: San Jose, CA, USA, 2008; Volume 6911, pp. 183–189. [Google Scholar]
- Roelandt, S.; Meuret, Y.; Craggs, G.; Verschaffelt, G.; Janssens, P.; Thienpont, H. Standardized Speckle Measurement Method Matched to Human Speckle Perception in Laser Projection Systems. Opt. Express 2012, 20, 8770. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, D.C. Diffractive Optics: Design, Fabrication, and Test; SPIE Press: San Jose, CA, USA, 2004; ISBN 978-0-8194-5171-2. [Google Scholar]
- Matsushima, K. Shifted Angular Spectrum Method for Off-Axis Numerical Propagation. Opt. Express 2010, 18, 18453–18463. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Cao, L.; Zhang, H.; Kong, D.; Jin, G. Accurate Calculation of Computer-Generated Holograms Using Angular-Spectrum Layer-Oriented Method. Opt. Express 2015, 23, 25440–25449. [Google Scholar] [CrossRef]
- Harvey, J.E.; Vernold, C.L.; Krywonos, A.; Thompson, P.L. Diffracted Radiance: A Fundamental Quantity in Nonparaxial Scalar Diffraction Theory. Appl. Opt. 1999, 38, 6469–6481. [Google Scholar] [CrossRef] [PubMed]
- Bertolotti, J.; van Putten, E.G.; Blum, C.; Lagendijk, A.; Vos, W.L.; Mosk, A.P. Non-Invasive Imaging through Opaque Scattering Layers. Nature 2012, 491, 232–234. [Google Scholar] [CrossRef]
Method of Reducing Speckle Contrast | Advantages | Disadvantages |
---|---|---|
Large divergence angle (including VCSEL illumination) | Effective at reducing speckle contrast down to 6%, as demonstrated in Figure 5 | If the diffuser is not optimized for divergent light sources, the profile shape is blurred, as shown in Figure 4 |
Increased number of emitters in VCSEL [18,19] | Up to 100 emitters, we see an improvement, as shown in Figure 6 | For more than 100 emitters, we do not see a significant improvement |
Integration of MEMS [22,23] | The method described in [23] is highly dependent on the height of the diffuser design:
| |
Random vibration [20,21] | For application, the system proposed in Ref [20] requires not only an external source to introduce vibrations but also two separate diffuser elements. The proposal seen in Ref [21] is also inconvenient for application that require compact systems | |
Mechanical motion [18,19] | The system proposed is a combination of a depolarizing screen, Galvano scan, dual polarizations and a moving diffuser to reduce speckle contrast of a laser source from 97% to 7% Ref [18]. | Moving diffuser means that a mechanical component must be added to the illumination module to reduce the speckle contrast of the diffuser, making the module less compact |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fugger, S.; Gow, J.; Ma, H.; Johansen, V.E.; Quaade, U.J. Measured and Predicted Speckle Correlation from Diffractive Metasurface Diffusers. Photonics 2024, 11, 845. https://doi.org/10.3390/photonics11090845
Fugger S, Gow J, Ma H, Johansen VE, Quaade UJ. Measured and Predicted Speckle Correlation from Diffractive Metasurface Diffusers. Photonics. 2024; 11(9):845. https://doi.org/10.3390/photonics11090845
Chicago/Turabian StyleFugger, Sif, Jonathan Gow, Hongfeng Ma, Villads Egede Johansen, and Ulrich J. Quaade. 2024. "Measured and Predicted Speckle Correlation from Diffractive Metasurface Diffusers" Photonics 11, no. 9: 845. https://doi.org/10.3390/photonics11090845
APA StyleFugger, S., Gow, J., Ma, H., Johansen, V. E., & Quaade, U. J. (2024). Measured and Predicted Speckle Correlation from Diffractive Metasurface Diffusers. Photonics, 11(9), 845. https://doi.org/10.3390/photonics11090845