Recent Advances in Diffractive Optics

A special issue of Photonics (ISSN 2304-6732).

Deadline for manuscript submissions: closed (30 November 2024) | Viewed by 27289

Special Issue Editors


E-Mail Website
Guest Editor
1. Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia
2. Laser Measurement Laboratory, IPSI RAS - Branch of the FSRC «Crystallography and Photonics» RAS, 443001 Samara, Russia
Interests: diffractive optics; singular optics; wavefront aberrations; polarization transformation
1. Department of Technical Cybernetics, Samara National Research University, 443086 Samara, Russia
2. Laser Measurement Laboratory, IPSI RAS - Branch of the FSRC «Crystallography and Photonics» RAS, 443001 Samara, Russia
Interests: diffractive optics; singular optics; femtosecond optics; numerical simulations, machine learning
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the past two decades, we have all witnessed rapid progress in the modeling of optical processes, particularly diffraction, both in the near and far zones. In its classical form, diffractive optics was applied to modulate the amplitude and phase of a light beam. Recent advances in diffractive optics are closely related to computational experiments on the action of three-dimensional micro- and nanostructures, which allow us to observe the complex process of light beam formation in real time, as well as to control its properties in space by varying the structure, shape, wavelength, or polarization of the light source and also by dynamically changing the element configuration. Modern diffractive optics makes it possible to control all characteristics of the laser beams, including the polarization of the field. Thanks to recent advances in diffractive optics, structured laser beams performing certain polarization transformations during propagation in an anisotropic medium are created.

In recent studies, we can see a trend of using spatial light modulators (SLMs) to replicate the results of a computational experiment and flexible adjustment of the optical system parameters, as well as machine learning based on data obtained in a natural experiment.

The combination of these approaches have shown very high efficiency. In addition, very interesting new interdisciplinary research is emerging regarding the use of advanced optical (including multichannel) diffractive elements. The use of multichannel diffractive elements makes it possible to perform several optical operations simultaneously, such as multiplexing, matched filtering, and the detection of laser radiation modes and wavefront.

This Special Issue aims to publish high-quality papers exploring new properties of known diffractive optical elements and suggesting new types of elements. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Diffraction gratings;
  • Axicons and Fresnel zone plates;
  • Microlens application;
  • Spiral phase plates action simulation;
  • Wavefront and polarization sensors;
  • Application of neural networks in optics;
  • Spiral microstructures;
  • Multi-order diffractive optical elements;
  • Diffraction-free beams;
  • Vortex beams;
  • Polarization transformations;
  • Sharp focus;
  • Spatial filtering.

The ITNT-2024 conference, associated with our Special Issue, will provide international platforms for scientists and researchers from all over the world to share their scientific achievements, explore current issues, and exchange new experiences and ideas in the field of information technology and nanotechnology:

The X International Conference and Youth School “Information Technologies and Nanotechnologies” (ITNT-2024) will be held on May 20-24, 2024 online and offline format, Samara, Russia, http://itnt-conf.org/.

The conference purpose is to provide an opportunity for results and scientific discussions of fundamental and applied research in the information technology and nanotechnology to attract young people to the field of advanced scientific research.

We look forward to receiving your contributions. 

Dr. Pavel Khorin
Dr. Elena Kozlova
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Photonics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • diffractive optics
  • singular optics
  • optical image processing
  • digital image processing
  • neural networks in optics
  • sensors, FDTD methods

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (18 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 6904 KiB  
Article
Considering Grayscale Process and Material Properties for Robust Multilevel Diffractive Flat Optics
by Diogo E. Aguiam, Ana Dias, Manuel J. L. F. Rodrigues, Aamod Shanker, Filipe Camarneiro, Joana D. Santos, Pablo Valentim, Joao Cunha and Patrícia C. Sousa
Photonics 2024, 11(12), 1200; https://doi.org/10.3390/photonics11121200 - 20 Dec 2024
Viewed by 443
Abstract
Arbitrarily designed flat optics directly manipulate the light wavefront to reproduce complex optical functions, enabling more compact optical assemblies and microsystem integration. Phase-shifting micro-optical devices rely on locally tailoring the optical path length of the wavefront through binary or multilevel surface relief micro- [...] Read more.
Arbitrarily designed flat optics directly manipulate the light wavefront to reproduce complex optical functions, enabling more compact optical assemblies and microsystem integration. Phase-shifting micro-optical devices rely on locally tailoring the optical path length of the wavefront through binary or multilevel surface relief micro- and nanostructures. Considering the resolution and tolerances of the production processes and the optical properties of the substrate and coating materials is crucial for designing robust multilevel diffractive flat optics. In this work, we evaluate the impact of the grayscale laser lithography resolution and geometry constraints on the efficiency of surface-relief diffractive lenses, and we analyze the process parameter space that limit lens performance. We introduce a spectral bandwidth metric to help evaluate the broad-spectrum performance of different materials. We simulate and experimentally observe that the diffractive focusing is dominated by the periodic wavelength-dependent phase discontinuities arising in the profile transitions of multilevel diffractive lenses. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

15 pages, 15053 KiB  
Article
Simple Direct Measurement of the Orbital Stokes Parameters in Structured Vortex Beams
by Alexander Volyar, Mikhail Bretsko, Server Khalilov and Yana Akimova
Photonics 2024, 11(11), 1095; https://doi.org/10.3390/photonics11111095 - 20 Nov 2024
Viewed by 478
Abstract
An analogy with the polarization Stokes parameters and symplectic methods of the second-order intensity moment matrix allowed us to develop a simple technique for measuring the orbital Stokes parameters followed by mapping the structured beam states onto the orbital Poincaré sphere. The measurement [...] Read more.
An analogy with the polarization Stokes parameters and symplectic methods of the second-order intensity moment matrix allowed us to develop a simple technique for measuring the orbital Stokes parameters followed by mapping the structured beam states onto the orbital Poincaré sphere. The measurement process involves only two shots of the beam intensity patterns in front of a cylindrical lens and in its double focus. Such a simple measurement approach is based on the reciprocity effect between the experimentally measured cross-intensity element Wxy and the orbital angular momentum of the intensity moment matrix. For experiments, we chose two types of two-parameter structured beams, namely, structured Laguerre–Gaussian beams and binomial beams. We obtained a good agreement between our theoretical background and the experiments, as well as the results of other authors. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

23 pages, 59448 KiB  
Article
Interference Generation of a Reverse Energy Flow with Varying Orbital and Spin Angular Momentum Density
by Andrey V. Ustinov, Alexey P. Porfirev and Svetlana N. Khonina
Photonics 2024, 11(10), 962; https://doi.org/10.3390/photonics11100962 - 14 Oct 2024
Cited by 1 | Viewed by 880
Abstract
This paper presents a novel method for generating and shaping reverse energy flow through the interference of light fields from a minimal number of point light sources. Until now, reverse energy flow has only been observed using complex light fields, such as optical [...] Read more.
This paper presents a novel method for generating and shaping reverse energy flow through the interference of light fields from a minimal number of point light sources. Until now, reverse energy flow has only been observed using complex light fields, such as optical vortices or cylindrical vector beams, limiting the formation of reverse energy flow near the optical axis. We demonstrate both analytically and numerically that unbounded regions of reverse energy flow can be achieved with just two point light sources, positioned asymmetrically at specific angles (e.g., 90 or 45 degrees) and with particular polarization states. The results indicate that the relative reverse energy flow can be enhanced by increasing the number of sources to three or four, adjusting their polarization, or introducing a vortex phase singularity. The presence of an initially embedded asymmetry in the fields under consideration leads to the formation of a non-uniform distribution of spin and orbital angular momentum density. Variations in the polarization state, as well as the introduction of a vortex phase singularity, allow for changing the distribution of angular momentum density while maintaining the presence of a reverse energy flow. We also explore the feasibility of implementing the obtained results using sectional phase diffractive optical elements, which will enhance the energy efficiency of the generated fields compared to point sources. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

27 pages, 52145 KiB  
Article
Polarization-Mode Transformation of the Light Field during Diffraction on Amplitude Binary Gratings
by Pavel A. Khorin, Mariia P. Mamaeva, Yury V. Kapitonov and Svetlana N. Khonina
Photonics 2024, 11(9), 848; https://doi.org/10.3390/photonics11090848 - 6 Sep 2024
Viewed by 845
Abstract
In this paper, a comparative analysis and numerical simulation of operation of two types of amplitude binary gratings (conventional and fork), both in the focal plane and near-field diffraction under illumination by mode beams with different polarization states, were performed. The simulation of [...] Read more.
In this paper, a comparative analysis and numerical simulation of operation of two types of amplitude binary gratings (conventional and fork), both in the focal plane and near-field diffraction under illumination by mode beams with different polarization states, were performed. The simulation of the field formation in the focal plane was performed using the Richards–Wolf formalism. The diffraction calculation in the near-field diffraction was performed based on the FDTD method, considering the 3D structure of optical elements. The possibility of multiplying the incident beam in different diffraction orders of binary gratings and the polarization transformation associated with spin–orbit interaction at tight focusing were shown. In this case, various polarization transformations were formed in ±1 diffraction orders of the fork grating due to different signs of the introduced vortex-like phase singularity. The obtained results can be useful for the laser processing of materials and surface structuring. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

21 pages, 8555 KiB  
Article
Measured and Predicted Speckle Correlation from Diffractive Metasurface Diffusers
by Sif Fugger, Jonathan Gow, Hongfeng Ma, Villads Egede Johansen and Ulrich J. Quaade
Photonics 2024, 11(9), 845; https://doi.org/10.3390/photonics11090845 - 5 Sep 2024
Viewed by 1228
Abstract
Speckles are inherent in structured laser-based light projection using diffractive optics such as metasurfaces or diffractive optical elements (DOEs). One application of structured light is to provide illumination for machine vision and depth sensing. This is particularly attractive for mobile or low-power applications, [...] Read more.
Speckles are inherent in structured laser-based light projection using diffractive optics such as metasurfaces or diffractive optical elements (DOEs). One application of structured light is to provide illumination for machine vision and depth sensing. This is particularly attractive for mobile or low-power applications, where metasurfaces provide a compact, customizable solution, which can furthermore reach extreme field of illuminations. However, the speckles might limit detection capabilities by, e.g., lowering the detection range or providing false results. In this work, we present a series of measurements with matching simulations on a 70 × 50 degrees diffractive diffuser using different light sources (varying divergence angles + VCSEL array) to quantify the impact of speckles. We observe a qualitative agreement in speckle correlation between the measurements and the simulations and explain, in part using cross-correlation for analysis, why we do not observe the same speckle pattern between the measurements and the simulations. By performing extra simulations, we conclude that by only changing the light source, there is a limit to the reduction of the speckle contrast which, we can achieve, and, to reduce it further, alternative approaches such as changing the design method of the diffractive diffuser must be harnessed. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

14 pages, 9002 KiB  
Article
Design of Cascaded DOEs for Focusing Different Wavelengths to Different Points
by Leonid L. Doskolovich, Daniil V. Soshnikov, Georgy A. Motz, Egor V. Byzov, Evgeni A. Bezus, Dmitry A. Bykov and Nikolay L. Kazanskiy
Photonics 2024, 11(9), 791; https://doi.org/10.3390/photonics11090791 - 23 Aug 2024
Viewed by 787
Abstract
We propose a task-specific method for calculating cascaded phase diffractive optical elements (DOEs) for focusing Q incident beams with different wavelengths to Q given points. Due to the utilization of a special optimization criterion, the proposed method makes it possible to calculate the [...] Read more.
We propose a task-specific method for calculating cascaded phase diffractive optical elements (DOEs) for focusing Q incident beams with different wavelengths to Q given points. Due to the utilization of a special optimization criterion, the proposed method makes it possible to calculate the elements of the cascaded DOE in a sequential way. In addition, the calculation of the diffractive microrelief of each DOE in the cascade is reduced to solving a set of independent and computationally simple “pointwise” optimization problems. Using the proposed method, cascades of two DOEs were designed to focus radiation of 11 different wavelengths to 11 different points. The presented numerical simulation results demonstrate good performance of the method. The chosen operating wavelengths correspond to a set of widely used vegetation indices enabling monitoring the vegetation status conditions and tracking the environmental stresses. This makes the obtained results promising for the application in remote sensing and smart agriculture. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

13 pages, 1250 KiB  
Article
Super-Oscillating Diffractive Optical Spot Generators
by Markus E. Testorf, Praneeth Gadamsetti, Paolo Batoni and Menelaos K. Poutous
Photonics 2024, 11(9), 790; https://doi.org/10.3390/photonics11090790 - 23 Aug 2024
Viewed by 590
Abstract
The prior discrete Fourier transform (PDFT) is applied to the design of super-oscillating diffractive optical elements with rotational symmetry. Numerical simulations of the filter response are used to demonstrate the potential of the PDFT-based approach, which includes a regularization method for improved numerical [...] Read more.
The prior discrete Fourier transform (PDFT) is applied to the design of super-oscillating diffractive optical elements with rotational symmetry. Numerical simulations of the filter response are used to demonstrate the potential of the PDFT-based approach, which includes a regularization method for improved numerical and functional stability of the filter design. For coherent monochromatic illumination, the Strehl ratio of spot generators as a function of the spot radius is compared to the theoretical upper bound. It is shown that the performance of the PDFT design varies significantly depending on the aperture function and the encoding as a phase-only diffractive element. Experimental results are in good agreement with simulations and demonstrate the moderate demands to implement super-oscillating diffractive optical elements. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

15 pages, 4455 KiB  
Article
Design of Diffractive Neural Networks for Solving Different Classification Problems at Different Wavelengths
by Georgy A. Motz, Leonid L. Doskolovich, Daniil V. Soshnikov, Egor V. Byzov, Evgeni A. Bezus, Nikita V. Golovastikov and Dmitry A. Bykov
Photonics 2024, 11(8), 780; https://doi.org/10.3390/photonics11080780 - 22 Aug 2024
Cited by 2 | Viewed by 847
Abstract
We consider the problem of designing a diffractive neural network (DNN) consisting of a set of sequentially placed phase diffractive optical elements (DOEs) and intended for the optical solution of several given classification problems at different operating wavelengths, so that each classification problem [...] Read more.
We consider the problem of designing a diffractive neural network (DNN) consisting of a set of sequentially placed phase diffractive optical elements (DOEs) and intended for the optical solution of several given classification problems at different operating wavelengths, so that each classification problem is solved at the corresponding wavelength. The problem of calculating the DNN is formulated as the problem of minimizing a functional that depends on the functions of the diffractive microrelief height of the DOEs constituting the DNN and represents the error in solving the given classification problems at the operating wavelengths. We obtain explicit and compact expressions for the derivatives of this functional, and using them, we formulate a gradient method for the DNN calculation. Using this method, we design DNNs for solving the following three classification problems at three different wavelengths: the problem of classifying handwritten digits from the MNIST database, the problem of classifying fashion products from the Fashion MNIST database, and the problem of classifying ten handwritten letters from the EMNIST database. The presented simulation results of the designed DNNs demonstrate the high performance of the proposed method. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

14 pages, 4139 KiB  
Article
Design of Photonic Molecule-Based Multiway Beam Splitter/Coupler with Variable Division Ratio
by Yury E. Geints
Photonics 2024, 11(7), 600; https://doi.org/10.3390/photonics11070600 - 26 Jun 2024
Viewed by 1108
Abstract
An optical beam splitter is used for dividing an input optical beam into several separate beams with a specific power ratio. Usually, conventional optical beam splitters have bulky dimensions (many optical wavelengths) and a fixed dividing ratio, which significantly limit the design of [...] Read more.
An optical beam splitter is used for dividing an input optical beam into several separate beams with a specific power ratio. Usually, conventional optical beam splitters have bulky dimensions (many optical wavelengths) and a fixed dividing ratio, which significantly limit the design of new miniaturized optical devices and integrated optical circuits. We propose and investigate in detail a novel physical concept of a highly miniaturized (up to two working wavelengths) planar optical resonant splitter/coupler with a switching element comprising a photonic molecule (PM) pair dispersing input optical fluxes in multiple directions with a tailored power ratio. The structural design of the proposed splitter is based on a silicon-on-insulator (SOI) platform and composed of high-quality resonators in the form of electromagnetically coupled submicron-sized microcylinders. The control on the power division ratio and the selection of optical beam directions is realized by tuning the photonic splitter structure to the corresponding resonance of the PM supermode. Compared to known analogs, the proposed design is easy and cheap in fabrication. Because of its tiny dimensions, it is suitable for integration into a “System-on-a-chip” platform and can dynamically change the beam power division ratio by input wave-phase manipulation. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

18 pages, 2319 KiB  
Article
Propagation of a Partially Coherent Bessel–Gaussian Beam in a Uniform Medium and Turbulent Atmosphere
by Igor Lukin and Vladimir Lukin
Photonics 2024, 11(6), 562; https://doi.org/10.3390/photonics11060562 - 14 Jun 2024
Viewed by 1744
Abstract
In this paper, the coherent properties of partially coherent Bessel–Gaussian optical beams propagating through a uniform medium (free space) or a turbulent atmosphere are examined theoretically. The consideration is based on the analytical solution of the equation for the transverse second-order mutual coherence [...] Read more.
In this paper, the coherent properties of partially coherent Bessel–Gaussian optical beams propagating through a uniform medium (free space) or a turbulent atmosphere are examined theoretically. The consideration is based on the analytical solution of the equation for the transverse second-order mutual coherence function of the field of partially coherent optical radiation in a turbulent atmosphere. For the partially coherent Bessel–Gaussian beam, the second-order mutual coherence function of the source field is taken as a Gaussian–Schell model. In this approximation, we analyze the behavior of the coherence degree and the integral coherence scale of these beams as a function of the propagation pathlength, propagation conditions, and beam parameters, such as the radius of the Gauss factor of the beam, parameter of the Bessel factor of the beam, topological charge, and correlation width of the source field of partially coherent radiation. It was found that, as a partially coherent vortex Bessel–Gaussian beam propagates through a turbulent atmosphere, there appear not two (as might be expected: one due to atmospheric turbulence and another due to the partial coherence of the source field), but only one ring dislocation of the coherence degree (due to the simultaneous effect of both these factors on the optical radiation). In addition, it is shown that the dislocation of the coherence degree that significantly affects the beam coherence level is formed only for beams, for which the coherence width of the source field is larger than the diameter of the first Fresnel zone. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

14 pages, 4641 KiB  
Article
Polarization Strips in the Focus of a Generalized Poincaré Beam
by Victor V. Kotlyar, Alexey A. Kovalev, Alexey M. Telegin and Elena Sergeevna Kozlova
Photonics 2024, 11(5), 430; https://doi.org/10.3390/photonics11050430 - 4 May 2024
Cited by 1 | Viewed by 1376
Abstract
We analyze the tight focusing of a generalized Poincaré beam using a Richards–Wolf formalism. Conventional Poincaré beams are superpositions of two Laguerre–Gaussian beams with orthogonal polarization, while the generalized Poincaré beams are composed of two arbitrary optical vortices with rotationally symmetric amplitudes. Analytical [...] Read more.
We analyze the tight focusing of a generalized Poincaré beam using a Richards–Wolf formalism. Conventional Poincaré beams are superpositions of two Laguerre–Gaussian beams with orthogonal polarization, while the generalized Poincaré beams are composed of two arbitrary optical vortices with rotationally symmetric amplitudes. Analytical relationships for projections of the electric field in the focal plane are derived. Using the superposition of a right-handed circularly polarized plane wave and an optical vortex with a topological charge of −1 as an example, relationships for the intensity distribution and the longitudinal projection of the spin angular momentum vector are deduced. It is theoretically and numerically shown that the original beam has a topological charge of −1/2 and a C-point of circular polarization, and it is generated at the focal plane center, producing an on-axis C-line with a singularity index of −1/2 (a star). Furthermore, when making a full circle of some radius around the optical axis, the major axis vector of polarization ellipse is theoretically and numerically shown to form a one-sided polarization (Möbius) strip of order −3/2, which has three half-twists and a single ‘patching’ in which two oppositely directed vectors of the major axis of polarization ellipse occur close to each other. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

10 pages, 2754 KiB  
Article
Scattering over Varying Amplification Grating
by Er’el Granot
Photonics 2024, 11(3), 244; https://doi.org/10.3390/photonics11030244 - 8 Mar 2024
Viewed by 967
Abstract
The scattering pattern from a narrow absorbing/amplifying grating is investigated. A simple model of a narrow amplifying grating is solved exactly numerically and approximately analytically for the regime where the beam’s wavelength is much shorter than the grating’s wavelength. The main result is [...] Read more.
The scattering pattern from a narrow absorbing/amplifying grating is investigated. A simple model of a narrow amplifying grating is solved exactly numerically and approximately analytically for the regime where the beam’s wavelength is much shorter than the grating’s wavelength. The main result is that the incident angle divides the scattering pattern into two regimes: below and above the incident angles. The former regime has a weak dependence on the incident angle but has a strong dependence on the scattering one. In this regime, a new grating formula is derived. The opposite occurs in the latter regime, which is very sensitive to the incident angle but has only weak dependence on the scattering angle. Consequently, at certain incident angles, all of the scattering is concentrated in the first regime, i.e., all scattering angles are lower than the incident angle. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

15 pages, 3725 KiB  
Article
Creating an Array of Parallel Vortical Optical Needles
by Paulius Šlevas and Sergej Orlov
Photonics 2024, 11(3), 203; https://doi.org/10.3390/photonics11030203 - 24 Feb 2024
Cited by 3 | Viewed by 1751
Abstract
We propose a method for creating parallel Bessel-like vortical optical needles with an arbitrary axial intensity distribution via the superposition of different cone-angle Bessel vortices. We analyzed the interplay between the separation of individual optical vortical needles and their respective lengths and introduce [...] Read more.
We propose a method for creating parallel Bessel-like vortical optical needles with an arbitrary axial intensity distribution via the superposition of different cone-angle Bessel vortices. We analyzed the interplay between the separation of individual optical vortical needles and their respective lengths and introduce a super-Gaussian function as their axial profile. We also analyzed the physical limitations to observe well-separated optical needles, as they are influenced by the mutual interference of the individual beams. To verify our theoretical and numerical results, we generated controllable spatial arrays of individual Bessel beams with various numbers and spatial separations by altering the spectrum of the incoming laser beam via the spatial light modulator. We demonstrate experimentally how to implement such beams using a diffractive mask. The presented method facilitates the creation of diverse spatial intensity distributions in three dimensions, potentially finding applications in specific microfabrication tasks or other contexts. These beams may have benefits in laser material processing applications such as nanochannel machining, glass via production, modification of glass refractive indices, and glass dicing. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

16 pages, 4382 KiB  
Article
Multispectral Narrowband Frustrated Total Internal Reflection Filter with Inclusions of Plasmonic Nanoparticles
by Nikolai I. Petrov
Photonics 2024, 11(2), 180; https://doi.org/10.3390/photonics11020180 - 16 Feb 2024
Viewed by 1356
Abstract
A spatial-frequency thin-film filter with inclusions of nanoparticles operating in the visible range of the spectrum is investigated. The effect of nanoparticles embedded in the central and lateral layers of the frustrated total internal reflection filter on the spectral characteristics, considering the frequency [...] Read more.
A spatial-frequency thin-film filter with inclusions of nanoparticles operating in the visible range of the spectrum is investigated. The effect of nanoparticles embedded in the central and lateral layers of the frustrated total internal reflection filter on the spectral characteristics, considering the frequency dispersion, is investigated. It is shown that plasmonic effects cause the splitting of the filter bandwidth into a set of narrow-band spectral lines and the angular splitting of the incident beam into a set of output beams. It is demonstrated that due to the difference in the resonance conditions for s- and p-polarization waves, the spectral lines of transparency do not coincide, which indicates the possibility of using the filter as a polarizer. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

14 pages, 3100 KiB  
Article
Vector Light Field Immediately behind an Ideal Spherical Lens: Spin–Orbital Conversion, Additional Optical Vortices, Spin Hall Effect, Magnetization
by Victor V. Kotlyar, Alexey A. Kovalev, Sergey S. Stafeev, Elena S. Kozlova and Alexey M. Telegin
Photonics 2023, 10(11), 1247; https://doi.org/10.3390/photonics10111247 - 9 Nov 2023
Cited by 1 | Viewed by 1117
Abstract
The Richards–Wolf formulas not only adequately describe a light field at a tight focus, but also make it possible to describe a light field immediately behind an ideal spherical lens, that is, on a converging spherical wave front. Knowing all projections of light [...] Read more.
The Richards–Wolf formulas not only adequately describe a light field at a tight focus, but also make it possible to describe a light field immediately behind an ideal spherical lens, that is, on a converging spherical wave front. Knowing all projections of light field strength vectors behind the lens, the longitudinal components of spin and orbital angular momenta (SAM and OAM) can be found. In this case, the longitudinal projection of the SAM immediately behind the lens either remains zero or decreases. This means that the Spin–Orbital Conversion (SOC) effect where part of the “spin goes into orbit” takes place immediately behind the lens. And the sum of longitudinal projections of SAM and OAM is preserved. As for the spin Hall effect, it does not form right behind the lens, but appears as focusing occurs. That is, there is no Hall effect immediately behind the lens, but it is maximum at the focus. This happens because two optical vortices with topological charges (TCs) 2 and −2 and with spins of different signs (with left and right circular polarization) are formed right behind the lens. However, the total spin is zero since amplitudes of these vortices are the same. The amplitude of optical vortices becomes different while focusing and at the focus itself, and therefore regions with spins of different signs (Hall effect) appear. A general form of initial light fields which longitudinal field component is zero at the focus was found. In this case, the SAM vector can only have a longitudinal component that is nonzero. The SAM vector elongated only along the optical axis at the focus is used in magnetization task. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

9 pages, 1280 KiB  
Article
Genetic Optimization of the Y-Shaped Photonic Crystal NOT Logic Gate
by Vladimir Pavelyev, Yuliana Krivosheeva and Dimitriy Golovashkin
Photonics 2023, 10(10), 1173; https://doi.org/10.3390/photonics10101173 - 21 Oct 2023
Cited by 2 | Viewed by 1523
Abstract
The present paper is devoted to the actual problem of photonic crystal (PhC) logic gate design. The development of components for photonic digital computing systems will provide opportunities for high-efficient information processing. The use of 2D photonic crystals is one of the most [...] Read more.
The present paper is devoted to the actual problem of photonic crystal (PhC) logic gate design. The development of components for photonic digital computing systems will provide opportunities for high-efficient information processing. The use of 2D photonic crystals is one of the most promising approaches to designing interference logic gates. Photonic crystal band gap and use of lattice defects are giving opportunities for flexible control of waveguiding light. Interference logic gates of NOT, OR, AND, and XOR types based on the Y-shaped structure are well known. However, known realizations have limited energy efficiency. Earlier, a method for minimizing energy losses at the PhC waveguide bending based on genetic optimization of the PhC waveguide topology was proposed and investigated. In this paper, the genetic algorithm for optimization of the PhC interference logic gate of the NOT type was used. Optimization of the Y-shaped topology allowed for an increase in the energy efficiency of the logic gate to 95%. A description of the developed numerical procedure as well as computer simulation results are presented. The developed procedure includes the possibility of taking into account the limitations of the technology to be used for the realization of a designed 2D PhC structure. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

12 pages, 5137 KiB  
Article
Influence of High-Order Twisting Phases on Polarization States and Optical Angular Momentum of a Vector Light Field
by Baoyin Liu, Yingqi Huang, Caixia Liu, Shu-Dan Wu, Khian-Hooi Chew and Rui-Pin Chen
Photonics 2023, 10(10), 1099; https://doi.org/10.3390/photonics10101099 - 29 Sep 2023
Cited by 1 | Viewed by 1030
Abstract
This study investigates the influence of high-order twisting phases on polarization states and optical angular momentum of a vector light field with locally linear polarization and a hybrid state of polarization (SoP). The twisted vector optical field (TVOF) is experimentally generated based on [...] Read more.
This study investigates the influence of high-order twisting phases on polarization states and optical angular momentum of a vector light field with locally linear polarization and a hybrid state of polarization (SoP). The twisted vector optical field (TVOF) is experimentally generated based on the orthogonal polarization bases with high-order twisting phases. The initial SoP of a TVOF modulated by the high-order twisting phase possesses various symmetric distributions. The propagation properties of a high-order TVOF with locally linear polarization and hybrid SoP are explored, including the intensity compression, expansion, and conversion between the linear and circular polarization components. In particular, orbital angular momentum (OAM) appears in a high-order TVOF during propagation where no OAM exists in the initial field. The variation of OAM distribution in cross-section becomes more frequent with the increase of the twisting phase order. In addition, a non-symmetric OAM distribution appears in a non-isotropic TVOF, leading to the rotation of the beam around the propagation axis during propagation. The optical energy flow distribution of a high-order TVOF provides a more profound understanding of the propagation dynamics of high-order TVOF. These results provide a new approach for optical field manipulation in a high-order TVOF. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

Review

Jump to: Research

77 pages, 9183 KiB  
Review
Synergy between AI and Optical Metasurfaces: A Critical Overview of Recent Advances
by Zoran Jakšić
Photonics 2024, 11(5), 442; https://doi.org/10.3390/photonics11050442 - 9 May 2024
Cited by 1 | Viewed by 6755
Abstract
The interplay between two paradigms, artificial intelligence (AI) and optical metasurfaces, nowadays appears obvious and unavoidable. AI is permeating literally all facets of human activity, from science and arts to everyday life. On the other hand, optical metasurfaces offer diverse and sophisticated multifunctionalities, [...] Read more.
The interplay between two paradigms, artificial intelligence (AI) and optical metasurfaces, nowadays appears obvious and unavoidable. AI is permeating literally all facets of human activity, from science and arts to everyday life. On the other hand, optical metasurfaces offer diverse and sophisticated multifunctionalities, many of which appeared impossible only a short time ago. The use of AI for optimization is a general approach that has become ubiquitous. However, here we are witnessing a two-way process—AI is improving metasurfaces but some metasurfaces are also improving AI. AI helps design, analyze and utilize metasurfaces, while metasurfaces ensure the creation of all-optical AI chips. This ensures positive feedback where each of the two enhances the other one: this may well be a revolution in the making. A vast number of publications already cover either the first or the second direction; only a modest number includes both. This is an attempt to make a reader-friendly critical overview of this emerging synergy. It first succinctly reviews the research trends, stressing the most recent findings. Then, it considers possible future developments and challenges. The author hopes that this broad interdisciplinary overview will be useful both to dedicated experts and a general scholarly audience. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

Back to TopTop