Terahertz CMOS High-Sensitivity Sensor Based on Hybridized Spoof Surface Plasmon Resonator
Abstract
:1. Introduction
2. Designs and Simulations
3. Sensing Simulation
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef] [PubMed]
- Owji, E. 2D Materials Coated on Etched Optical Fibers as Humidity Sensor. Sci. Rep. 2021, 11, 1771. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bai, P.; Zhou, X.; Akimov, Y.; Png, C.E.; Ang, L.-K.; Knoll, W.; Wu, L. Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth. Adv. Opt. Mater. 2019, 7, 1801433. [Google Scholar] [CrossRef]
- Shin, J.; Liu, Z.; Bai, W.; Liu, Y.; Yan, Y.; Xue, Y.; Kandela, I.; Pezhouh, M.; MacEwan, M.R.; Huang, Y.; et al. Bioresorbable Optical Sensor Systems for Monitoring of Intracranial Pressure and Temperature. Sci. Adv. 2019, 5, eaaw1889. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Goldberg, A.F.; Stoltz, B.M. Label-Free Detection of Single Nanoparticles and Biological Molecules Using Microtoroid Optical Resonators. Light Sci. Appl. 2016, 5, e16001. [Google Scholar] [CrossRef]
- Prabowo, B.; Purwidyantri, A.; Liu, K.-C. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors 2018, 8, 80. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, W.Y.; Lei, Y.; Zheng, X.; Zhang, J.; Cui, T.J. Spoof Localized Surface Plasmons for Sensing Applications. Adv. Mater. Technol. 2021, 6, 2000863. [Google Scholar] [CrossRef]
- Liao, Z.; Liu, S.; Ma, H.F.; Li, C.; Jin, B.; Cui, T.J. Electromagnetically Induced Transparency Metamaterial Based on Spoof Localized Surface Plasmons at Terahertz Frequencies. Sci. Rep. 2016, 6, 27596. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yu, H.; Zhang, H.C.; Yang, C.; Cui, T.J. On-Chip Sub-Terahertz Surface Plasmon Polariton Transmission Lines in CMOS. Sci. Rep. 2015, 5, 14853. [Google Scholar] [CrossRef]
- Shang, Y.; Yu, H.; Hu, S.; Liang, Y.; Bi, X.; Arasu, M.A. High-Sensitivity CMOS Super-Regenerative Receiver with Quench-Controlled High-$Q$ Metamaterial Resonator for Millimeter-Wave Imaging at 96 and 135 GHz. IEEE Trans. Microw. Theory Technol. 2014, 62, 3095–3106. [Google Scholar] [CrossRef]
- Gao, X.; Chen, B.J.; Shum, K.; Ma, Q.; Cui, W.Y.; Cui, T.J.; Chan, C.H. Multifunctional Terahertz Spoof Plasmonic Devices. Adv. Mater. Technol. 2023, 8, 2202050. [Google Scholar] [CrossRef]
- Zhang, H.C.; Zhang, Q.; Liu, J.F.; Tang, W.; Fan, Y.; Cui, T.J. Smaller-Loss Planar SPP Transmission Line than Conventional Microstrip in Microwave Frequencies. Sci. Rep. 2016, 6, 23396. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Shen, Y.; Hu, S. On-Chip Localized Surface Plasmon Resonator for 127 GHz Compact CMOS Oscillator. IEEE Electron Device Lett. 2023, 44, 1927–1930. [Google Scholar] [CrossRef]
- Thapa, S.K.; Pokharel, R.K.; Chen, B.; Barakat, A. On-Chip Millimeter-Wave DGS Based Bandstop Filter in 0.18-μm CMOS Process. IEEE Trans. Circuits Syst. II 2022, 69, 2732–2736. [Google Scholar] [CrossRef]
- Harmankaya, S.; Deveci, H.A.; Harmankaya, A.; Gül, F.H.; Atar, N.; Yola, M.L. Thiram Determination in Milk Samples by Surface Plasmon Resonance Based on Molecularly Imprinted Polymers and Sulphur-Doped Titanium Dioxide. Biosensors 2024, 14, 329. [Google Scholar] [CrossRef] [PubMed]
- Pesavento, M.; Zeni, L.; Maria, L.D.; Alberti, G.; Cennamo, N. SPR-Optical Fiber-Molecularly Imprinted Polymer Sensor for the Detection of Furfural in Wine. Biosensors 2021, 11, 72. [Google Scholar] [CrossRef]
- Pors, A.; Moreno, E.; Martin-Moreno, L.; Pendry, J.B.; Garcia-Vidal, F.J. Localized Spoof Plasmons Arise While Texturing Closed Surfaces. Phys. Rev. Lett. 2012, 108, 223905. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Luo, Y.; Fernández-Domínguez, A.I.; Shen, X.; Maier, S.A.; Cui, T.J. High-Order Localized Spoof Surface Plasmon Resonances and Experimental Verifications. Sci. Rep. 2015, 5, 9590. [Google Scholar] [CrossRef] [PubMed]
- Gholamian, M.; Shabanpour, J.; Cheldavi, A. Highly Sensitive Quarter-Mode Spoof Localized Plasmonic Resonator for Dual-Detection RF Microfluidic Chemical Sensor. J. Phys. D Appl. Phys. 2020, 53, 145401. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, T.J. Contactless Glucose Sensing at Sub-Micromole Level Using a Deep-Subwavelength Decimeter-Wave Plasmonic Resonator. Laser Photonics Rev. 2022, 16, 2200221. [Google Scholar] [CrossRef]
- Luo, C.; Chen, L. Highly Sensitive and Tunable Absorption-Induced Transparency for Terahertz Fingerprint Sensing with Spoof Surface Plasmon Polaritons. IEEE Sens. J. 2024, 24, 17686–17692. [Google Scholar] [CrossRef]
- Yang, B.J.; Zhou, Y.J.; Xiao, Q.X. Spoof Localized Surface Plasmons in Corrugated Ring Structures Excited by Microstrip Line. Opt. Express OE 2015, 23, 21434–21442. [Google Scholar] [CrossRef]
- Liao, Z.; Pan, B.C.; Shen, X.; Cui, T.J. Multiple Fano Resonances in Spoof Localized Surface Plasmons. Opt. Express 2014, 22, 15710. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Cui, T.J. Ultrathin Plasmonic Metamaterial for Spoof Localized Surface Plasmons: Spoof Localized Surface Plasmons. Laser Photonics Rev. 2014, 8, 137–145. [Google Scholar] [CrossRef]
- Kim, Y.; Salim, A.; Lim, S. Millimeter-Wave-Based Spoof Localized Surface Plasmonic Resonator for Sensing Glucose Concentration. Biosensors 2021, 11, 358. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, L.; Sun, Q.; Liao, D.; Ding, L.; Balakin, A.V.; Shkurinov, A.P.; Xie, J.; Zang, X.; Cheng, Q.; et al. Terahertz On-Chip Sensing by Exciting Higher Radial Order Spoof Localized Surface Plasmons. Appl. Phys. Express 2020, 13, 012014. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Gao, H.; Fu, X.; Bao, D.; Cui, T.J. Mixed-Resolution High-Q Sensor Based on Hybridized Spoof Localized Surface Plasmons. Front. Phys. 2022, 10, 850186. [Google Scholar] [CrossRef]
- Bao, D.; Cheng, Q.; Jiang, W.X.; Zhang, J.J.; Liao, Z.; Wu, J.W.; Yang, J.; Zhang, X.R.; Cui, T.J. Concentric Designer Plasmon Hybridization in Deep Subwavelength Metamaterial Resonator. Appl. Phys. Lett. 2019, 115, 121103. [Google Scholar] [CrossRef]
- Su, H.; Shen, X.; Su, G.; Li, L.; Ding, J.; Liu, F.; Zhan, P.; Liu, Y.; Wang, Z. Efficient Generation of Microwave Plasmonic Vortices via a Single Deep-Subwavelength Meta-Particle. Laser Photonics Rev. 2018, 12, 1800010. [Google Scholar] [CrossRef]
Dielectric | Thickness (μm) | Relative Permittivity |
---|---|---|
PASS3 | 0.6 | 7.9 |
PASS2 | 0.15 | 4.15 |
PASS1 | 3.6 | 4.15 |
DIEL_METAL6 | 4.7 | 3.8 |
DIEL_CTM_VIA | 0.88 | 3.83 |
IMD5A | 0.55 | 3.7 |
IMD (4A-1A) | 0.615 | 3.7 |
DIEL_VIA (4-1) | 0.765 | 3.819 |
ILD2 | 0.5 | 4 |
ILD1 | 0.25 | 4 |
FOX | 0.35 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, M.; Li, C.; Bao, D.; Wang, J.; Lu, K.; Qu, Z.; Gao, H. Terahertz CMOS High-Sensitivity Sensor Based on Hybridized Spoof Surface Plasmon Resonator. Photonics 2025, 12, 102. https://doi.org/10.3390/photonics12020102
Wan M, Li C, Bao D, Wang J, Lu K, Qu Z, Gao H. Terahertz CMOS High-Sensitivity Sensor Based on Hybridized Spoof Surface Plasmon Resonator. Photonics. 2025; 12(2):102. https://doi.org/10.3390/photonics12020102
Chicago/Turabian StyleWan, Ming, Chenchen Li, Di Bao, Jiangpeng Wang, Kai Lu, Zhenyu Qu, and Hao Gao. 2025. "Terahertz CMOS High-Sensitivity Sensor Based on Hybridized Spoof Surface Plasmon Resonator" Photonics 12, no. 2: 102. https://doi.org/10.3390/photonics12020102
APA StyleWan, M., Li, C., Bao, D., Wang, J., Lu, K., Qu, Z., & Gao, H. (2025). Terahertz CMOS High-Sensitivity Sensor Based on Hybridized Spoof Surface Plasmon Resonator. Photonics, 12(2), 102. https://doi.org/10.3390/photonics12020102