Creation of Bessel–Gaussian Beams from Necklace Beams via Second-Harmonic Generation
Abstract
:1. Introduction
2. Experimental Scheme
3. Theoretical Model
3.1. General Remarks Regarding the Fourier Transformation of a Function in Polar Coordinates
3.2. Analytical Model
4. Results and Discussion
4.1. Data from the Analytical Model
4.2. Experimental Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 1987, 4, 651–654. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Chávez-Cerda, S. Generalized parabolic nondiffracting beams of two orders. J. Opt. Soc. Am. A 2018, 35, 1511–1517. [Google Scholar] [CrossRef]
- Lin, Y.; Seka, W.; Eberly, J.H.; Huang, H.; Brown, D.L. Experimental investigation of Bessel beam characteristics. Appl. Opt. 1992, 31, 2708–2713. [Google Scholar] [CrossRef]
- McGloin, D.; Dholakia, K. Bessel beams: Diffraction in a new light. Contemp. Phys. 2005, 46, 15–28. [Google Scholar] [CrossRef]
- Durnin, J.; Miceli, J.J.; Eberly, J.H. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499–1501. [Google Scholar] [CrossRef]
- Yu, X.; Todi, A.; Tang, H. Bessel beam generation using a segmented deformable mirror. Appl. Opt. 2018, 57, 4677–4682. [Google Scholar] [CrossRef]
- Bowman, R.; Muller, N.; Zambrana-Puyalto, X.; Jedrkiewicz, O.; Trapani, P.D.; Padgett, M.J. Efficient generation of Bessel beam arrays by means of an SLM. Eur. Phys. J. Spec. Top. 2011, 199, 159–166. [Google Scholar] [CrossRef]
- Duocastella, M.; Arnold, C. Bessel and annular beams for materials processing. Laser Photonics Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Vetter, C.; Steinkopf, R.; Bergner, K.; Ornigotti, M.; Nolte, S.; Gross, H.; Szameit, A. Realization of Free-Space Long-Distance Self-Healing Bessel Beams. Laser Photonics Rev. 2019, 13, 1900103. [Google Scholar] [CrossRef]
- Stoyanov, L.; Zhekova, M.; Stefanov, A.; Stefanov, I.; Paulus, G.G.; Dreischuh, A. Zeroth- and first-order long range non-diffracting Gauss-Bessel beams generated by annihilating multiple-charged optical vortices. Sci. Rep. 2020, 10, 21981. [Google Scholar] [CrossRef]
- Stoyanov, L.; Zhang, Y.; Dreischuh, A.; Paulus, G.G. Long-range quasi-non-diffracting Gauss-Bessel beams in a few-cycle laser field. Opt. Express 2021, 29, 10997–11008. [Google Scholar] [CrossRef]
- Stoyanov, L.; Topuzoski, S.; Paulus, G.G.; Dreischuh, A. Optical vortices in brief: Introduction for experimentalists. Eur. Phys. J. Plus 2023, 138, 702. [Google Scholar] [CrossRef]
- Berry, M.V. Making waves in physics. Nature 2000, 403, 21. [Google Scholar] [CrossRef]
- Heckenberg, N.R.; McDuff, R.; Smith, C.P.; White, A.G. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 1992, 17, 221–223. [Google Scholar] [CrossRef]
- Swartzlander, G.A.; Law, C.T. Optical vortex solitons observed in Kerr nonlinear media. Phys. Rev. Lett. 1992, 69, 2503–2506. [Google Scholar] [CrossRef]
- Beijersbergen, M.; Coerwinkel, R.; Kristensen, M.; Woerdman, J. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 1994, 112, 321–327. [Google Scholar] [CrossRef]
- Lee, W.H. Computer-Generated Holograms: Techniques and Applications. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 1978; Volume 16, pp. 119–232. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Yu, P.; Chen, S.; Li, J.; Cheng, H.; Li, Z.; Liu, W.; Xie, B.; Liu, Z.; Tian, J. Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces. Opt. Lett. 2015, 40, 3229–3232. [Google Scholar] [CrossRef]
- Li, J.S.; Chen, J.Z. Multi-beam and multi-mode orbital angular momentum by utilizing a single metasurface. Opt. Express 2021, 29, 27332–27339. [Google Scholar] [CrossRef]
- Dimitrov, N.; Zhekova, M.; Zhang, Y.; Paulus, G.G.; Dreischuh, A. Background-free femtosecond autocorrelation in collinearly-aligned inverted field geometry using optical vortices. Opt. Commun. 2022, 504, 127493. [Google Scholar] [CrossRef]
- Piessens, R. The Hankel Transform. The Transforms and Applications Handbook, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Abramovitz, M.; Stegun, I.A. Handbook of Mathematical Functions with. Formulas, Graphs, and Mathematical Tables. Appl. Math. Seties 1972, 55, 358. [Google Scholar]
- Sheppard, C.J.R.; Porras, M.A. Comparison between the propagation properties of Bessel–Gauss and generalized Laguerre–Gauss beams. Photonics 2023, 10, 1011. [Google Scholar] [CrossRef]
- Tissandier, F.; Sebban, S.; Ribière, M.; Gautier, J.; Zeitoun, P.; Lambert, G.; Goddet, J.P.; Burgy, F.; Valentin, C.; Rousse, A.; et al. Bessel spatial profile of a soft x-ray laser beam. Appl. Phys. Lett. 2010, 97, 231106. [Google Scholar] [CrossRef]
- Sulc, M.; Gayde, J.-C. Low Divergence Structured Beam In View Of Precise Long-Range Alignment. EPJ Web Conf. 2022, 266, 10024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, N.; Hristov, K.; Zhekova, M.; Dreischuh, A. Creation of Bessel–Gaussian Beams from Necklace Beams via Second-Harmonic Generation. Photonics 2025, 12, 119. https://doi.org/10.3390/photonics12020119
Dimitrov N, Hristov K, Zhekova M, Dreischuh A. Creation of Bessel–Gaussian Beams from Necklace Beams via Second-Harmonic Generation. Photonics. 2025; 12(2):119. https://doi.org/10.3390/photonics12020119
Chicago/Turabian StyleDimitrov, Nikolay, Kiril Hristov, Maya Zhekova, and Alexander Dreischuh. 2025. "Creation of Bessel–Gaussian Beams from Necklace Beams via Second-Harmonic Generation" Photonics 12, no. 2: 119. https://doi.org/10.3390/photonics12020119
APA StyleDimitrov, N., Hristov, K., Zhekova, M., & Dreischuh, A. (2025). Creation of Bessel–Gaussian Beams from Necklace Beams via Second-Harmonic Generation. Photonics, 12(2), 119. https://doi.org/10.3390/photonics12020119