Cascaded Directional Coupler-Based Triplexer Working on Spectroscopically Relevant Wavelengths for Multiple Gas Detection
Abstract
:1. Introduction
2. Methods and Designs
3. Fabrication and Experimental Setup
4. Results
4.1. Optimization of Coupling Length (Lc1) for λNH3 and λCH4
4.1.1. Simulation Results
4.1.2. Experimental Results
4.2. Optimization of Coupling Length (Lc3l) for λCO2
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.; Kosterev, A.A.; Thomazy, D.; Tittel, F.K. QEPAS spectrophones: Design; optimization; performance. Appl. Phys. B 2010, 100, 627–635. [Google Scholar] [CrossRef]
- Nikodem, M. Laser-Based Trace Gas Detection inside Hollow-Core Fibers: A Review. Materials 2020, 13, 3983. [Google Scholar] [CrossRef]
- Patimisco, P.; Borri, S.; Sampaolo, A.; Beere, H.E.; Ritchie, D.A.; Vitiello, M.S.; Scamarcio, G.; Spagnolo, V. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser. Analyst 2014, 139, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Galli, I.; Bartalini, S.; Borri, S.; Cancio, P.; Mazzotti, D.; Natale, P.; Giusfredi, G. Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection. Phys. Rev. Lett. 2011, 107, 270802. [Google Scholar] [CrossRef] [PubMed]
- Nugent-Glandorf, L.; Giorgetta, F.R.; Diddams, S.A. Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb. Appl. Phys. B 2015, 119, 327–338. [Google Scholar] [CrossRef]
- Bak, J.; Clausen, S. FTIR emission spectroscopy methods and procedures for real time quantitative gas analysis in industrial environments. Meas. Sci. Technol. 2002, 13, 150. [Google Scholar] [CrossRef]
- Jahromi, K.E.; Nematollahi, M.; Pan, Q.; Abbas, M.A.; Cristescu, S.M.; Harren, F.J.M.; Khodabakhsh, A. Sensitive multi-species trace gas sensor based on a high repetition rate mid-infrared supercontinuum source. Opt. Express 2020, 28, 26091–26101. [Google Scholar] [CrossRef]
- Patimisco, P.; Sampaolo, A.; Zheng, H.; Dong, L.; Tittel, F.K.; Spagnolo, V. Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: A review. Adv. Phys. X 2017, 2, 169–187. [Google Scholar] [CrossRef]
- Russo, S.D.; Sampaolo, A.; Patimisco, P.; Menduni, G.; Giglio, M.; Hoelzl, C.; Passaro, V.M.N.; Wu, H.; Dong, L.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species. Photoacoustics 2021, 21, 100227. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Liu, Y.; Lin, L.; Zhu, W.; Zhou, X.; Zhong, Y.; Giglio, M.; Sampaolo, A.; Patimisco, P.; Tittel, F.K.; et al. Application of standard and custom quartz tuning forks for quartz-enhanced photoacoustic spectroscopy gas sensing. Appl. Spectrosc. Rev. 2023, 58, 562–584. [Google Scholar] [CrossRef]
- Russo, S.D.; Zifarelli, A.; Patimisco, P.; Sampaolo, A.; Wei, T.; Wu, H.; Dong, L.; Spagnolo, V. Light-induced thermo-elastic effect in quartz tuning forks exploited as photodetector in gas absorption spectroscopy. Opt. Express 2020, 28, 19074–19084. [Google Scholar] [CrossRef]
- Patimisco, P.; Sampaolo, A.; Dong, L.; Giglio, M.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing. Sens. Actuators B Chem. 2016, 227, 539–546. [Google Scholar] [CrossRef]
- Zifarelli, A.; De Palo, R.; Patimisco, P.; Giglio, M.; Sampaolo, A.; Blaser, S.; Butet, J.; Landry, O.; Müller, A.; Spagnolo, V. Multi-gas quartz-enhanced photoacoustic sensor for environmental monitoring exploiting a Vernier effect-based quantum cascade laser. Photoacoustics 2022, 28, 100401. [Google Scholar] [CrossRef]
- Feng, W.; Qu, Y.; Gao, Y.; Ma, Y. Advances in fiber-based quartz enhanced photoacoustic spectroscopy for trace gas sensing. Microw. Opt. Technol. Lett. 2021, 63, 2031–2039. [Google Scholar] [CrossRef]
- Paul, P.H.; Kychakoff, G. Fiber-optic evanescent field absorption sensor. Appl. Phys. Lett. 1987, 51, 12–14. [Google Scholar] [CrossRef]
- Pendão, C.; Silva, I. Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications. Sensors 2022, 22, 7554. [Google Scholar] [CrossRef]
- Annunziato, A.; Anelli, F.; Teilleul, P.L.P.D.; Cozic, S.; Poulain, S.; Prudenzano, F. Fused optical fiber combiner based on indium fluoride glass: Perspectives for mid-IR applications. Opt. Express 2022, 30, 44160–44174. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Anand, S.; He, S. Design of a Polarization Insensitive Triplexer Using Directional Couplers Based on Submicron Silicon Rib Waveguides. J. Light. Technol. 2009, 27, 1443–1447. [Google Scholar]
- Okubo, K.; Uchiyamada, K.; Asakawa, K.; Suzuki, H. Silicon Nitride Directional Coupler Interferometer for Surface Sensing. Opt. Eng. 2017, 56, 17101. [Google Scholar] [CrossRef]
- Xu, H.; Shi, Y. On-Chip Silicon Triplexer Based on Asymmetrical Directional Couplers. IEEE Photonics Technol. Lett. 2017, 29, 1265–1268. [Google Scholar] [CrossRef]
- Samir, R.; Afifi, A.; Badr, M.; Swillam, M. Modelling, characterization, and applications of silicon on insulator loop terminated asymmetric Mach Zehnder interferometer. Sci. Rep. 2022, 12, 3598. [Google Scholar]
- Okamoto, K.; Yamada, H. Arrayed-waveguide grating multiplexer with flat spectral response. Opt. Lett. 1995, 20, 43–45. [Google Scholar] [CrossRef]
- Rouifed, M.S.; Littlejohns, C.G.; Tina, G.X.; Qiu, H.; Penadés, J.S.; Nedeljkovic, M.S.; Zhang, Z.; Liu, C.; Thomson, D.J.; Mashanovich, G.Z.; et al. Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm. Opt. Express 2017, 25, 10893–10900. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef]
- Hu, Y.; Jenkins, R.M.; Gardes, F.Y.; Finlayson, E.D.; Mashanovich, G.Z.; Reed, G.T. Wavelength division (de)multiplexing based on dispersive self-imaging. Opt. Lett. 2011, 36, 4488–4490. [Google Scholar] [CrossRef] [PubMed]
- Doany, F.E.; Budd, R.A.; Schares, L.; Huynh, T.N.; Wood, M.; Kuchta, D.M.; Dupuis, N.; Schow, C.; Lee, B.G.; Moehrle, M.; et al. A Four-Channel Silicon Photonic Carrier with Flip-Chip Integrated Semiconductor Optical Amplifier (SOA) Array Providing >10-dB Gain. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1061–1068. [Google Scholar]
- Gong, Z. Layer-Scale and Chip-Scale Transfer Techniques for Functional Devices and Systems: A Review. Nanomaterials 2021, 11, 842. [Google Scholar] [CrossRef]
- Moscoso-Mártir, A.; Merget, F.; Mueller, J.; Hauck, J.; Romero-García, S.; Shen, B.; Lelarge, F.; Brenot, R.; Garreau, A.; Mentovich, E.; et al. Hybrid Silicon Photonics Flip-Chip Laser Integration with Vertical Self-Alignment. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Pacific Rim, Singapore, 31 July–4 August 2017; Optica Publishing Group: Washington, DC, USA, 2017; p. s2069. [Google Scholar]
- Pollock, C.R.; Lipson, M. Introduction and Overview. In Integrated Photonics; Springer: New York, NY, USA, 2003; pp. 1–7. [Google Scholar]
- Huang, W.-P. Coupled-mode theory for optical waveguides: An overview. J. Opt. Soc. Am. A 1994, 11, 963–983. [Google Scholar] [CrossRef]
- Lin, H.; Luo, Z.; Gu, T.; Kimerling, L.C.; Wada, K.; Agarwal, A.; Hu, J. Mid-infrared integrated photonics on silicon: A perspective. Nanophotonics 2017, 7, 393–420. [Google Scholar] [CrossRef]
- Muñoz, P.; Micó, G.; Bru, L.A.; Pastor, D.; Pérez, D.; Doménech, J.D.; Fernández, J.; Baños, R.; Gargallo, B.; Alemany, R.; et al. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications. Sensors 2017, 17, 2088. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, G.; Li, J.; Zhao, C.; Wang, W.; Radamson, H.H. SiN-based platform toward monolithic integration in photonics and electronics. J. Mater. Sci. Mater. Electron. 2021, 32, 1–18. [Google Scholar] [CrossRef]
- Sharma, T.; Wang, J.; Kaushik, B.K.; Cheng, Z.; Kumar, R.; Wei, Z.; Li, X. Review of Recent Progress on Silicon Nitride-Based Photonic Integrated Circuits. IEEE Access 2020, 8, 195436–195446. [Google Scholar] [CrossRef]
- Song, J.H.; Kongnyuy, T.D.; De Heyn, P.; Lardenois, S.; Jansen, R.; Rottenberg, X. Low-Loss Waveguide Bends by Advanced Shape for Photonic Integrated Circuits. J. Lightwave Technol. 2020, 38, 3273–3279. [Google Scholar] [CrossRef]
- Okamoto, K. Chapter 7—Beam propagation method. In Fundamentals of Optical Waveguides, 2nd ed.; Okamoto, K., Ed.; Academic Press: Cambridge, MA, USA, 2006; pp. 329–397. [Google Scholar]
- Hadley, G.R. Wide-angle beam propagation using Pad approximant operators. Opt. Lett. 1992, 17, 1426. [Google Scholar] [CrossRef] [PubMed]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- Philipp, H.R. Optical Properties of Silicon Nitride. J. Electrochem. Soc. 1973, 120, 295. [Google Scholar] [CrossRef]
- Thottoli, A.; Biagi, G.; Vorobev, A.S.; Giglio, M.; Magno, G.; O’Faolain, L.; Grande, M. Highly efficient and selective integrated directional couplers for multigas sensing applications. Sci. Rep. 2023, 13, 22720. [Google Scholar] [CrossRef]
- Li, J.; O’Faolain, L.; Schulz, S.A.; Krauss, T.F. Low loss propagation in slow light photonic crystal waveguides at group indices up to 60. Photonics Nanostruct. 2012, 10, 589–593. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thottoli, A.; Biagi, G.; Vorobev, A.S.; D’Orazio, A.; Magno, G.; O’Faolain, L. Cascaded Directional Coupler-Based Triplexer Working on Spectroscopically Relevant Wavelengths for Multiple Gas Detection. Photonics 2025, 12, 192. https://doi.org/10.3390/photonics12030192
Thottoli A, Biagi G, Vorobev AS, D’Orazio A, Magno G, O’Faolain L. Cascaded Directional Coupler-Based Triplexer Working on Spectroscopically Relevant Wavelengths for Multiple Gas Detection. Photonics. 2025; 12(3):192. https://doi.org/10.3390/photonics12030192
Chicago/Turabian StyleThottoli, Ajmal, Gabriele Biagi, Artem S. Vorobev, Antonella D’Orazio, Giovanni Magno, and Liam O’Faolain. 2025. "Cascaded Directional Coupler-Based Triplexer Working on Spectroscopically Relevant Wavelengths for Multiple Gas Detection" Photonics 12, no. 3: 192. https://doi.org/10.3390/photonics12030192
APA StyleThottoli, A., Biagi, G., Vorobev, A. S., D’Orazio, A., Magno, G., & O’Faolain, L. (2025). Cascaded Directional Coupler-Based Triplexer Working on Spectroscopically Relevant Wavelengths for Multiple Gas Detection. Photonics, 12(3), 192. https://doi.org/10.3390/photonics12030192