Research Progress of Grating-Based X-Ray Phase-Contrast Imaging and Key Devices
Abstract
:1. Introduction
2. Materials and Methods
3. X-Ray Phase-Contrast Imaging Method
3.1. Crystal Interferometer
3.2. Propagation-Based X-Ray Phase-Contrast Imaging
3.3. Diffraction-Enhanced Imaging
3.4. Grating-Based Phase-Contrast Imaging Method
3.4.1. Talbot–Lau Interferometer
3.4.2. Dual-Phase Grating Interferometer
3.4.3. Inverse Talbot–Lau Interferometer
3.4.4. Single-Grating X-Ray Imaging
3.4.5. X-Ray Phase-Contrast Imaging Based on Wave-Front Coding
4. Primary Performance Indexes of X-Ray Grating Phase-Contrast Imaging
4.1. Variance of Signal
4.2. Sensitivity of the System
5. Important Applications of X-Ray Grating Interferometer
5.1. Application of X-Ray Phase-Contrast Imaging
5.2. Application of X-Ray Scattering Image
6. Key Components of the Grating-Based X-Ray Phase-Contrast Imaging
6.1. X-Ray Phase Grating
6.2. X-Ray Absorption Grating
6.3. Spatial Coherent Structured X-Ray Source
6.4. The Groundbreaking Efforts of Our Team
7. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Bach, P.B.; Mirzkin, J.N.; Oliver, T.K.; Azzoli, C.G.; Berry, D.A.; Brawley, O.W.; Byers, T.; Colditz, G.A.; Gould, M.K.; Jett, J.R.; et al. Benifits and harms of CT screening for lung cancer: A systematic review. J. Am. Med. Assoc. 2012, 307, 2418–2429. [Google Scholar]
- Pogany, A.; Gao, D.; Wilkins, S.W. Contrast and resolution in imaging with a microfocus x-ray source. Am. Inst. Phys. 1997, 68, 2774–2782. [Google Scholar]
- Herzen, J.; Donath, T.; Pfeiffer, F.; Bunk, O.; David, C. Quantitative phase-contrast tomography of a liquid phantom using a conventional X-ray tube source. Opt. Express 2009, 17, 10010–10018. [Google Scholar] [PubMed]
- Wilkins, S.W.; Gureyev, T.E.; Gao, D.; Pogany, A.; Stevenson, A.W. Phase-contrast imaging using polychromatic hard X-rays. Nature 1996, 384, 335–338. [Google Scholar]
- Momose, A. X-ray phase imaging reaching clinical uses. Phys. Media 2020, 79, 93–102. [Google Scholar]
- Tao, S.; He, C.; Hao, X.; Kuang, C.; Liu, X. Principles of different X-ray phase-contrast imaging: A review. Appl. Sci. 2021, 11, 2971. [Google Scholar] [CrossRef]
- Bonse, U.; Hart, M. An x-ray interferometer. Appl. Phys. Lett. 1965, 6, 155–156. [Google Scholar]
- Cloetens, P.; Ludwig, W.; Baruchel, J. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Appl. Phys. Lett. 1999, 75, 2912–2914. [Google Scholar]
- Zabler, S.; Cloetens, P.; Guigay, J.P.; Baruchel, J.; Schlenker, M. Optimization of phase-contrast imaging using hard x rays. Rev. Sci. Instrum. 2005, 76, 73705–73707. [Google Scholar] [CrossRef]
- Nesterets, Y.I.; Wilkins, S.W.; Gureyev, T.E.; Pogany, A.; Stevenson, A.W. On the optimization of experimental parameters for x-ray in-line phase-contrast imaging. Rev. Sci. Instrum. 2005, 76, 093706–093716. [Google Scholar] [CrossRef]
- Gureyev, T.E.; Raven, C.; Snigirev, A.; Snigireva, I.; Wilkins, S.W. Hard x-ray quantitative non-interferometric phase-contrast microscopy. J. Phys. D Appl. Phys. 1999, 32, 563–567. [Google Scholar] [CrossRef]
- Preissner, M.; Murrie, R.P.; Pinar, I.; Werdiger, F.; Carnibella, R.P.; Zosky, G.R.; Fouras, A.; Dubsky, S. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals. Phys. Med. Biol. 2018, 63, 08NT03. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Yuan, Q.; Huang, W. Principles of X-ray diffraction enhanced imaging. ACTA Phys. Sin. 2006, 55, 1089–1098. [Google Scholar]
- Fitzgerald, R. Phase-sensitive x-ray imaging. Phys. Today 2000, 53, 23–26. [Google Scholar] [CrossRef]
- Davis, T.J.; Gao, D.; Gureyev, T.E.; Stevenson, A.W.; Wilkins, S.W. Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 1995, 373, 595–598. [Google Scholar] [CrossRef]
- Arfelli, F.; Astolfo, A.; Rigon, L.; Menk, R.H. A Gaussian extension for Diffraction Enhanced Imaging. Sci. Rep. 2018, 8, 362. [Google Scholar] [CrossRef]
- David, C.; Nöhammer, B.; Ziegler, E. Differential x-ray phase-contrast imaging using a shearing interferometer. Appl. Phys. Lett. 2002, 81, 3287–3289. [Google Scholar] [CrossRef]
- Swanson, G.J.; Leith, E.N. Lau effect and grating imaging. Opt. Soc. Am. 1982, 72, 552–555. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Weitkamp, T.; Bunk, O.; David, C. Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat. Phys. 2006, 2, 258–261. [Google Scholar] [CrossRef]
- Momose, A.; Kawamoto, S.; Koyama, I.; Hamaishi, Y.; Takai, K.; Suzuki, Y. Demonstration of X-ray Talbot interferometry. Jpn. J. Appl. Phys. 2003, 42, L866–L868. [Google Scholar] [CrossRef]
- Valdivia, M.P.; Perez-Callejo, G.; Bouffetier, V.; Collins, G.W.; Stoeckl, C.; Filkins, T.; Mileham, C.; Romanofsky, M.; Begishev, I.A.; Theobald, W. Current advances on talbot-lau x-ray imaging diagnostics for high energy density experiments (invited). Rev. Sci. Instrum. 2022, 93, 115102. [Google Scholar] [CrossRef] [PubMed]
- Zangi, P.; Ikematsu, K.; Meyer, P.; Takano, H.; Wu, Y.; Gutekunst, J.; Börner, M.; Last, A.; Korvink, J.G.; Momose, A. Parabolic gratings enhance the X-ray sensitivity of Talbot interferograms. Sci. Rep. 2023, 13, 9624. [Google Scholar] [CrossRef] [PubMed]
- Seifert, M.; Gallersdrfer, M.; Ludwig, V.; Schuster, M.; Horn, F.; Pelzer, G.; Rieger, J.; Michel, T.; Anton, G. Improved Reconstruction Technique for Moire Imaging Using an X-Ray Phase-Contrast Talbot–Lau Interferometer. J. Imaging 2018, 4, 62. [Google Scholar] [CrossRef]
- Yang, J.; Wu, H.; Luo, K.; Guo, J.C.; Zong, F.K. Suppression of artifacts in X-ray phase-contrast images retrieved by Fourier transform. Acta Phys. Sin. 2021, 70, 104101. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; Guo, J. Analysis of phase grating imaging based on principal diffraction orders algorithm. Acta Photonica Sin. 2021, 50, 1105002. [Google Scholar]
- Miao, H.; Chen, L.; Bennett, E.E.; Adamo, N.M.; Gomella, A.A.; DeLuca, A.M.; Patel, A.; Morgan, N.Y.; Wen, H. Motionless phase stepping in X-ray phase-contrast imaging with a compact source. Proc. Natl. Acad. Sci. USA 2013, 110, 19268–19272. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, K.; Wang, Z.; Stampanoni, M. Low-dose, simple, and fast grating-based X-ray phase-contrast imaging. Proc. Natl. Acad. Sci. USA 2010, 107, 13576–13581. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, K.; Ge, X.; Wu, Z.; Chen, H.; Wang, S.; Zhu, P.; Yuan, Q.; Huang, W.; Kai, Z.; et al. X-ray phase radiography and tomography with grating interferometry and the reverse projection technique. J. Phys. D Appl. Phys. 2013, 46, 494003. [Google Scholar] [CrossRef]
- Rong, F.; Liang, Y.; Xu, W.; Lei, Y.; Li, J. X-Ray phase-contrast Imaging by Talbot-Lau Interferometer Without Phase-Stepping Device. IEEE Photonics Technol. Lett. 2018, 30, 1795–1798. [Google Scholar] [CrossRef]
- Ge, Y.; Li, K.; Garrett, J.; Chen, G.H. Grating based x-ray differential phase-contrast imaging without mechanical phase stepping. Opt. Express 2014, 22, 14246–14252. [Google Scholar] [CrossRef]
- Vargas, J.; Quiroga, J.A.; Belenguer, T. Phase-shifting interferometry based on principal component analysis. Opt. Lett. 2011, 36, 1326–1328. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.; Sorzano, C.O.S.; Estrada, J.C.; Carazo, J.M. Generalization of the Principal Component Analysis algorithm for interferometry. Opt. Commun. 2013, 286, 130–134. [Google Scholar] [CrossRef]
- Pelzer, G.; Rieger, J.; Hauke, C.; Horn, F.; Michel, T.; Seifert, M.; Anton, G. Reconstruction method for grating-based x-ray phase-contrast images without knowledge of the grating positions. J. Instrum. 2015, 10, P12017. [Google Scholar] [CrossRef]
- Schroter, T.J.; Koch, F.J.; Meyer, P.; Kunka, D.; Meiser, J.; Willer, K.; Gromann, L.; Marco, F.D.; Herzen, J.; Noel, P.; et al. Large field-of-view tiled grating structures for X-ray phase-contrast imaging. Rev. Sci. Instrum. 2017, 88, 015104. [Google Scholar] [CrossRef]
- Hauke, C.; Bartl, P.; Leghissa, M.; Ritschl, L.; Sutter, S.M.; Weber, T.; Zeidler, J.; Freudenberger, J.; Mertelmeier, T.; Radicke, M.; et al. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects. Med. Phys. 2018, 45, 2565–2571. [Google Scholar] [CrossRef]
- Seifert, M.; Ludwig, V.; Kaeppler, S.; Horn, F.; Meyer, P.; Pelzer, G.; Rieger, J.; Sand, D.; Michel, T.; Mohr, J.; et al. Talbot-Lau x-ray phase-contrast setup for fast scanning of large samples. Sci. Rep. 2019, 9, 4199. [Google Scholar] [CrossRef]
- Miao, H.; Panna, A.; Gomella, A.A.; Bennett, E.E.; Znati, S.; Chen, L.; Wen, H. A Universal Moire Effect and Application in X-Ray Phase-Contrast Imaging. Nat. Phys. 2016, 12, 830–834. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, X.; Huang, J.; Du, Y.; Guo, J.; Zhao, Z.; Li, J. Cascade Talbot–Lau interferometers for x-ray differential phase-contrast imaging. J. Phys. D Appl. Phys. 2018, 51, 385302. [Google Scholar] [CrossRef]
- Kagias, M.; Wang, Z.; Jefimovs, K.; Stampanoni, M. Dual phase grating interferometer for tunable dark-field sensitivity. Appl. Phys. Lett. 2017, 110, 014105. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, J.; Yang, J.; Zhu, P.; Zhang, H.; Zheng, H.; Liang, D. Angular sensitivity of an x-ray differential phase-contrast imaging system with real and virtual source images. Opt. Lett. 2021, 46, 2791–2794. [Google Scholar] [CrossRef]
- Yan, A.; Wu, X.; Liu, H. Quantitative theory of X-ray interferometers based on dual phase grating: Fringe period and visibility. Opt. Express 2018, 26, 23142–23155. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, J.; Zhu, P.; Yang, J.; Deng, S.; Shi, W.; Zhang, K.; Guo, J.; Zhang, H.; Zheng, H.; et al. Dual phase grating based X-ray differential phase-contrast imaging with source grating: Theory and validation. Opt. Express 2020, 28, 9786–9801. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, J.; Lei, Y.; Zheng, J.; Shan, Y.; Guo, D.; Guo, J. Analysis of period and visibility of dual phase grating interferometer. Chin. Phys. B 2022, 31, 025701. [Google Scholar] [CrossRef]
- Momose, A.; Yashiro, W.; Kido, K.; Kiyohara, J.; Makifuchi, C.; Ito, T.; Nagatsuka, S.; Honda, C.; Noda, D.; Hattori, T.; et al. X-ray phase imaging: From synchrotron to hospital. Phil. Trans. R. Soc. A 2014, 372, 20130023. [Google Scholar] [CrossRef]
- Momose, A.; Kuwabara, H.; Yashiro, W. X-ray Phase Imaging Using Lau Effect. Appl. Phys. Express 2011, 4, 1–3. [Google Scholar] [CrossRef]
- Morimoto, N.; Fujino, S.; Ohshima, K.I.; Harada, J.; Hosoi, T.; Watanabe, H.; Shimura, T. X-ray phase-contrast imaging by compact Talbot-Lau interferometer with a single transmission grating. Opt. Lett. 2014, 39, 4297–4300. [Google Scholar] [CrossRef]
- Wali, F.; Zhu, P.; Hu, R.; Wu, Z.; Bao, Y.; Tian, Y. Signal-to-noise ratio comparison of angular signal radiography and phase stepping method. Chin. Phys. B 2017, 26, 120601. [Google Scholar]
- Wen, H.; Bennett, E.; Hegedus, M.M.; Carroll, S.C. Spatial harmonic imaging of x-ray scattering: Initial results. IEEE Trans. Med. Imaging 2008, 27, 997–1002. [Google Scholar] [CrossRef]
- Wen, H.; Bennett, E.E.; Hegedus, M.M.; Rapacchi, S. Fourier X-ray Scattering Radiography Yields Bone Structural Information. Radiology 2009, 251, 910–918. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Huang, J.; Lei, Y.; Li, J. Single-Shot Phase-Contrast Imaging with a Single Grating. Photonics 2023, 10, 968. [Google Scholar] [CrossRef]
- Wen, H.H.; Bennett, E.E.; Kopace, R.; Stein, A.F.; Pai, V. Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings. Opt. Lett. 2010, 35, 1932–1934. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Woo, T.; Cho, H.; Hong, D.; Je, U.; Park, C.; Lim, H. Detection analysis of phase-contrast X-ray imaging (PCXI) with single grid for nano-scopic applications. Optik 2016, 127, 562–566. [Google Scholar] [CrossRef]
- Olivo, A.; Speller, R. Modelling of a novel x-ray phase-contrast imaging technique based on codedapertures. Phys. Med. Biol. 2007, 52, 6555–6573. [Google Scholar] [CrossRef] [PubMed]
- Olivo, A.; Speller, R. Image formation principles in coded-aperture based x-ray phase-contrast imaging. Phys. Med. Biol. 2008, 22, 6461–6474. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, L.; Chen, Z.; Peng, W.; Li, R. Sensitivity of a non-interferometric grating-based x-rayimaging system. Phys. Med. Biol. 2014, 59, 1573–1588. [Google Scholar] [CrossRef]
- Massimi, L.; Clark, S.J.; Marussi, S.; Doherty, A.; Shah, S.M.; Schulz, J.; Marathe, S.; Rau, C.; Endrizzi, M.; Lee, P.D.; et al. Time resolved in-situ multi-contrast X-ray imaging of melting in metals. Sci. Rep. 2022, 12, 12136. [Google Scholar] [CrossRef]
- Munro, P.R.; Ignatyev, K.; Speller, R.D.; Olivo, A. Phase and absorption retrieval using incoherent X-ray sources. Proc. Natl. Acad. Sci. USA. 2012, 109, 13922–13927. [Google Scholar] [CrossRef]
- Endrizzi, M.; Diemoz, P.C.; Millard, T.P.; Jones, J.L.; Speller, R.D.; Robinson, I.K.; Olivo, A. Hard X-ray dark-field imaging with incoherent sample illumination. Appl. Phys. Lett. 2014, 104, 20416–20419. [Google Scholar] [CrossRef]
- Vincent, R.; Christian, K.; Rolf, K.; Straumann, U.; Urban, C. Noise analysis of grating-based x-ray differential phase-contrast imaging. Rev. Sci. Instrum. 2010, 81, 073709. [Google Scholar]
- Rieger, J.; Meyer, P.; Horn, F.; Pelzer, G.; Michel, T.; Mohr, J.; Anton, G. Optimization procedure for a Talbot-Lau x-ray phase-contrast imaging system. J. Instrum. 2017, 12, P04018. [Google Scholar] [CrossRef]
- Donath, T.; Chabior, M.; Pfeiffer, F.; Bunk, O.; Reznikova, E.; Mohr, J.; Hempel, E.; Popescu, S.; Hoheisel, M.; Schuster, M.; et al. Inverse geometry for grating-based x-ray phase-contrast imaging. J. Appl. Phys. 2009, 106, 054703. [Google Scholar] [CrossRef]
- Yan, A.; Wu, X.; Liu, H. Sample phase gradient and fringe phase shift in dual phase grating X-ray interferometry. Opt. Express 2019, 27, 35437–35447. [Google Scholar] [CrossRef]
- Meyer, H.; Dey, J.; Carr, S.; Ham, K.; Butler, L.G.; Dooley, K.M.; Hidrovo, I.; Bleuel, M.; Varga, T.; Schulz, J.; et al. Theoretical and experimental analysis of the modulated phase grating X-ray interferometer. Sci Rep. 2024, 14, 26780. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, J.; Lei, Y.; Liu, X.; Zhao, Z. Experimental study of X-ray phase-contrast imaging based on cascaded Grating. Acta Photonica Sin. 2019, 48, 0111003. [Google Scholar] [CrossRef]
- Braunagel, M.; Birnbacher, L.; Willner, M.; Marschner, M.; Marco, F.D.; Viermetz, M.; Notohamiprodjo, S.; Hellbach, K.; Auweter, S.; Link, V.; et al. Qualitative and Quantitative Imaging Evaluation of Renal Cell Carcinoma Subtypes with Grating-based X-ray Phase-contrast CT. Sci. Rep. 2017, 7, 45400. [Google Scholar] [CrossRef]
- Yoshioka, H.; Kadono, Y.; Kim, Y.T.; Oda, H.; Maruyama, T.; Akiyama, Y.; Mimura, T.; Tanaka, J.; Niitsu, M.; Hoshino, Y.; et al. Imaging evaluation of the cartilage in rheumatoid arthritis patients with an x-ray phase imaging apparatus based on Talbot-Lau interferometry. Sci. Rep. 2020, 10, 6561. [Google Scholar] [CrossRef]
- Bech, M.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Pauwels, B.; Hostens, J.; Bruyndonckx, P.; Sasov, A.; Pfeiffer, F. In-vivo dark-field and phase-contrast x-ray imaging. Sci. Rep. 2013, 3, 3209. [Google Scholar] [CrossRef]
- Scherer, K.; Yaroshenko, A.; Bölükbas, D.A.; Gromann, L.B.; Hellbach, K.; Meinel, F.G.; Braunagel, M.; Bergens, J.V.; Eickelberg, O.; Reiser, M.F.; et al. X-ray dark-field radiography in-vivo diagnosis of lung cancer in mice. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Willer, K.; Fingerle, A.A.; Noichl, W.; Marco, D.F.; Frank, M.; Urban, T.; Schick, R.; Gustschin, A.; Gleich, B.; Herzen, J.; et al. X-ray dark-field chest imaging for detection and quantification of emphysema in patients with chronic obstructive pulmonary disease: A diagnostic accuracy study. Lancet Digit. Health 2021, 3, e733–e744. [Google Scholar] [CrossRef]
- Wang, Z.; Hauser, N.; Singer, G.; Trippel, M.; Kubik-Huch, R.A.; Schneider, C.W.; Stampanoni, M. Non-invasive classification of microcalcifications with phase-contrast X-ray mammography. Nat. Commun. 2014, 5, 3797. [Google Scholar] [CrossRef]
- Wang, Z.; Hauser, N.; Singer, G.; Trippel, M.; Kubik-Huch, R.A.; Schneider, C.W.; Stampanoni, M. Correspondence: Reply to ‘Quantitative evaluation of X-ray dark-field images for microcalcificatioin analysis in mammography’. Nat. Commun. 2016, 7, 10868. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, X.; Lei, Y.; Guo, J.; Niu, H. Non-absorption grating approach for X-ray phase-contrast imaging. Opt. Express 2011, 19, 22669–22674. [Google Scholar] [CrossRef] [PubMed]
- David, C.; Bruder, J.; Rohbeck, T.; Grünzweig, C.; Kottler, C.; Diaz, A.; Bunk, O.; Pfeiffer, F. Fabrication of diffraction gratings for hard X-ray phase-contrast imaging. Microelectron. Eng. 2007, 84, 1172–1177. [Google Scholar] [CrossRef]
- Noda, D.; Tanaka, M.; Shimada, K.; Hattori, T. Fabrication of diffraction grating with high aspect ratio using X-ray lithography technique for X-ray phase imaging. Jpn. J. Appl. Physcis 2007, 46, 849–851. [Google Scholar] [CrossRef]
- Rutishauser, S.; Bednarzik, M.; Zanette, I.; Weitkamp, T.; Börner, M.; Mohr, J.; David, C. Fabrication of two-dimentional hard X-ray diffraction gratings. Microelectron. Eng. 2013, 101, 12–16. [Google Scholar] [CrossRef]
- Kagias, M.; Wang, Z.; Guzenko, V.A.; David, C.; Stampanoni, M.; Jefimovs, K. Fabrication of Au gratings by seedless electroplating for X-ray grating interferometry. Mater. Sci. Semicond. Process. 2019, 92, 73–79. [Google Scholar] [CrossRef]
- Comamala, J.V.; Romano, L.; Guzenko, V.; Kagias, M.; Stampanoni, M.; Jefimovs, K. Towards sub-micrometer high aspect ratio X-ray gratings by atomic layer deposition of iridium. Microelectron. Eng. 2018, 192, 19–24. [Google Scholar] [CrossRef]
- Lei, Y.; Li, X.; Xu, G.; Feng, C.; Huang, J.; Liu, X.; Li, J. Performance comparison of x-ray absorption gratings fabricated by free deposition and centrifugal filling methods. J. Micromech. Microeng 2023, 33, 035004. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, X.; Guo, J.; Zhao, Z.; Niu, H. Development of X-ray scintillator functioning also as an analyser grating used in grating-based x-ray differential phase-contrast imaging. Chin. Phys. B 2011, 20, 042901. [Google Scholar] [CrossRef]
- Keshu, W.; Yoshihiro, T.; Wataru, Y.; Momose, A. Fabrication of multiple slit using stacked-sliced method for hard X-ray Talbot-Lau interferometer. Jpn. J. Appl. Phys. 2008, 47, 7412–7414. [Google Scholar]
- Wu, H.; Yang, J.; Zong, F.; Luo, K.; Zheng, J.; Guo, J. Fabrication of X-ray absorption grating by thermal composite method. Jap. J. Appl. Phys. 2021, 60, 076506. [Google Scholar] [CrossRef]
- Guo, J.C.; Zhou, B.; Liu, X.; Ren, X.; Niu, H. An X-ray tube of high radiation flux and spatial coherence. J. Shenzhen Univ. Sci. Eng. 2011, 28, 311–315. [Google Scholar]
- Guo, J.; Liu, X.; Zhou, B.; Du, Y.; Lei, Y.; Niu, H. Development of key devices of grating-based X-ray phase-contrast imaging technology at Shenzhen University. AIP Conf. Proc. 2012, 1466, 61–66. [Google Scholar]
- Guibin, Z.; David, J.V.; Richard, I.S.; Yun, W.; Wang, Q.; Wang, G. Design optimization of a periodic microstructured array anode for hard x-ray grating interferometry. Phys. Med. Biol. 2019, 64, 145011. [Google Scholar]
- Zan, G.; Gul, S.; Zhang, J.; Zhao, W.; Lewis, S.; Vine, D.J.; Liu, Y.; Pianetta, P.; Yun, W. High-resolution multicontrast tomography with an X-ray microarray anode–structured target source. Proc. Natl. Acad. Sci. USA 2021, 118, e2103126118. [Google Scholar] [CrossRef]
Methods | Source | Spatial Coherence Requirements | Characteristic | Light Utilization Rate | Imaging Quality | Signal-to-Noise Ratio (SNR) |
---|---|---|---|---|---|---|
Crystal interferometer | Synchrotron radiation | High | High sensitivity, small field of view | Low | excellent | - |
Propagation-based X-ray phase-contrast imaging | Synchrotron radiation, Microfocus X-ray tube | High | Simple structure, insensitive to boundary features, unable to quantify phase information | High | good | ∝1/E2 |
Diffraction-enhanced imaging | Synchrotron radiation, | High | High precision and sensitivity requirements for motion | Low | excellent | ∝1/E |
Talbot–Lau interferometer | Synchrotron radiation, X-ray tube | Low | Complex structure, high sensitivity | High | excellent | ∝1/E2 |
Dual-phase grating interferometer | Synchrotron radiation, X-ray tube | Low | Complex structure, high sensitivity | Low | excellent | ∝1/E2 |
Inverse Talbot–Lau interferometer | Synchrotron radiation, X-ray tube | Low | Simple structure and high sensitivity | High | excellent | ∝1/E2 |
Single-grating X-ray imaging | Synchrotron radiation, Microfocus X-ray tube | High | Fast imaging | Low | good | - |
Wave-front coding phase-contrast imaging | Synchrotron radiation, X-ray tube | Low | Fast imaging | Low | good | ∝1/E |
Signal Type | With Sample | Without Sample |
---|---|---|
Signal Type | gbPC-CT/Histo | abCT/Histo | clinCT/Histo | MRI/Histo |
---|---|---|---|---|
Fibrous strands | 15/15 | 0/15 | 0/15 | 4/15 |
Pseudocapsule | 8/9 | 0/ 9 | 0/9 | 6/9 |
Calcification | 9/17 | 17/17 | 4/17 | * |
Microbleeding | 10/11 | 0/11 | 0/ 11 | * |
Diffuse hemorrhage | 5/5 | 3/5 | 2/5 | 5/5 |
Hyalinization | 6/8 | 6/8 | 2/8 | 6/8 |
Necrosis | 2/3 | 0/3 | 0/3 | 1/3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, F.; Yang, J.; Guo, J.; Zhang, J.; Du, Y.; Zhang, C. Research Progress of Grating-Based X-Ray Phase-Contrast Imaging and Key Devices. Photonics 2025, 12, 222. https://doi.org/10.3390/photonics12030222
Zong F, Yang J, Guo J, Zhang J, Du Y, Zhang C. Research Progress of Grating-Based X-Ray Phase-Contrast Imaging and Key Devices. Photonics. 2025; 12(3):222. https://doi.org/10.3390/photonics12030222
Chicago/Turabian StyleZong, Fangke, Jun Yang, Jinchuan Guo, Jingjin Zhang, Yang Du, and Chenggong Zhang. 2025. "Research Progress of Grating-Based X-Ray Phase-Contrast Imaging and Key Devices" Photonics 12, no. 3: 222. https://doi.org/10.3390/photonics12030222
APA StyleZong, F., Yang, J., Guo, J., Zhang, J., Du, Y., & Zhang, C. (2025). Research Progress of Grating-Based X-Ray Phase-Contrast Imaging and Key Devices. Photonics, 12(3), 222. https://doi.org/10.3390/photonics12030222