Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser
Abstract
:1. Introduction
2. Experimental Apparatus
3. LFI Without NIR Membrane Excitation
4. LFI with NIR Membrane Excitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SM | Self-mixing; |
QCL | Quantum cascade laser; |
THz | Terahertz; |
LFI | Laser feedback interferometry; |
NIR | Near-infrared; |
OF | Optical feedback; |
CW | Continuous wave; |
SSM | Stationary self-mixing; |
ASM | Alternate self-mixing; |
PZT | Piezo-electric; |
OSC | Oscilloscope; |
AWG | Arbitrary waveform generator; |
ML | Master laser. |
Appendix A. FEM Simulations of the Membrane Mechanical Response
Module | Description | Symbol | Values |
---|---|---|---|
Geometry | Au disc radius | R | 100 μm |
Au thickness | 50 nm | ||
thickness | 300 nm | ||
Au density | 19,300 kg/m3 | ||
density | 3100 kg/m3 | ||
Solid Mechanics | Au Young’s modulus | 90 GPa | |
Young’s modulus | 260 GPa | ||
Au Poisson ratio | 0.42 | ||
Poisson ratio | 0.23 | ||
Au initial stress | GPa | ||
initial stress | 1039 GPa | ||
Heat Transfer | Au thermal conductivity | 300 W/(m*K) | |
thermal conductivity | 30 W/(m*K) | ||
Au specific heat | 125 J/(kg*K) | ||
specific heat | 700 J/(kg*K) | ||
Surface thermal emissivity | 0.9 | ||
IR excitation power | 1–10 mW | ||
Reference temperature | 293.15 K | ||
IR metal absorption | 5% | ||
Events | Event start time | 50 ms | |
IR pulse ON/OFF state duration (short) | 250 ms | ||
IR pulse ON/OFF state duration (long) | 660 ms | ||
IR metal absorption | 5% | ||
Multiphysics | Au thermal expansion | 1/K | |
thermal expansion | 1/K |
References
- Taimre, T.; Nikolić, M.; Bertling, K.; Lim, Y.L.; Bosch, T.; Rakić, A.D. Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing. Adv. Opt. Photonics 2015, 7, 570–631. [Google Scholar] [CrossRef]
- Kane, D.M.; Shore, K.A. Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Nerin, P.; Puget, P.; Besesty, P.; Chartier, G. Self-mixing using a dual-polarisation Nd: YAG microchip laser. Electron. Lett. 1997, 33, 491–492. [Google Scholar] [CrossRef]
- King, P.; Steward, G. Metrology with an optical maser. New Sci. 1963, 17, 14. [Google Scholar]
- Seko, A.; Mitsuhashi, Y.; Morikawa, T.; Shimada, J.; Sakurai, K. Self-quenching in semiconductor lasers and its applications in optical memory readout. Appl. Phys. Lett. 1975, 27, 140–141. [Google Scholar] [CrossRef]
- Donati, S.; Giuliani, G.; Merlo, S. Laser diode feedback interferometer for measurement of displacements without ambiguity. IEEE J. Quantum Electron. 1995, 31, 113–119. [Google Scholar] [CrossRef]
- Giuliani, G.; Norgia, M.; Donati, S.; Bosch, T. Laser diode self-mixing technique for sensing applications. J. Opt. A Pure Appl. Opt. 2002, 4, S283. [Google Scholar] [CrossRef]
- Keeley, J.; Bertling, K.; Rubino, P.L.; Lim, Y.L.; Taimre, T.; Qi, X.; Kundu, I.; Li, L.H.; Indjin, D.; Rakić, A.D.; et al. Detection sensitivity of laser feedback interferometry using a terahertz quantum cascade laser. Opt. Lett. 2019, 44, 3314–3317. [Google Scholar] [CrossRef]
- Rakić, A.D.; Taimre, T.; Bertling, K.; Lim, Y.L.; Dean, P.; Valavanis, A.; Indjin, D. Sensing and imaging using laser feedback interferometry with quantum cascade lasers. Appl. Phys. Rev. 2019, 6, 021320. [Google Scholar] [CrossRef]
- von Staden, J.; Gensty, T.; Elsäßer, W.; Giuliani, G.; Mann, C. Measurements of the α factor of a distributed-feedback quantum cascade laser by an optical feedback self-mixing technique. Opt. Lett. 2006, 31, 2574–2576. [Google Scholar] [CrossRef]
- Green, R.P.; Xu, J.H.; Mahler, L.; Tredicucci, A.; Beltram, F.; Giuliani, G.; Beere, H.E.; Ritchie, D.A. Linewidth enhancement factor of terahertz quantum cascade lasers. Appl. Phys. Lett. 2008, 92, 071106. [Google Scholar] [CrossRef]
- Keeley, J.; Freeman, J.; Bertling, K.; Lim, Y.L.; Mohandas, R.A.; Taimre, T.; Li, L.H.; Indjin, D.; Rakić, A.D.; Linfield, E.H.; et al. Measurement of the emission spectrum of a semiconductor laser using laser-feedback interferometry. Sci. Rep. 2017, 7, 7236. [Google Scholar] [CrossRef] [PubMed]
- Leng Lim, Y.; Dean, P.; Nikolić, M.; Kliese, R.; Khanna, S.P.; Lachab, M.; Valavanis, A.; Indjin, D.; Ikonić, Z.; Harrison, P.; et al. Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers. Appl. Phys. Lett. 2011, 99, 081108. [Google Scholar] [CrossRef]
- Mezzapesa, F.P.; Columbo, L.L.; De Risi, G.; Brambilla, M.; Dabbicco, M.; Spagnolo, V.; Scamarcio, G. Nanoscale displacement sensing based on nonlinear frequency mixing in quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 107–114. [Google Scholar] [CrossRef]
- Maisons, G.; Carbajo, P.G.; Carras, M.; Romanini, D. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser. Opt. Lett. 2010, 35, 3607–3609. [Google Scholar] [CrossRef]
- Manfred, K.M.; Hunter, K.M.; Ciaffoni, L.; Ritchie, G.A. ICL-based OF-CEAS: A sensitive tool for analytical chemistry. Anal. Chem. 2017, 89, 902–909. [Google Scholar] [CrossRef]
- Rakić, A.D.; Taimre, T.; Bertling, K.; Lim, Y.L.; Dean, P.; Indjin, D.; Ikonić, Z.; Harrison, P.; Valavanis, A.; Khanna, S.P.; et al. Swept-frequency feedback interferometry using terahertz frequency QCLs: A method for imaging and materials analysis. Opt. Express 2013, 21, 22194–22205. [Google Scholar] [CrossRef]
- Mezzapesa, F.; Columbo, L.; Brambilla, M.; Dabbicco, M.; Vitiello, M.; Scamarcio, G. Imaging of free carriers in semiconductors via optical feedback in terahertz quantum cascade lasers. Appl. Phys. Lett. 2014, 104, 041112. [Google Scholar] [CrossRef]
- Dean, P.; Lim, Y.L.; Valavanis, A.; Kliese, R.; Nikolić, M.; Khanna, S.P.; Lachab, M.; Indjin, D.; Ikonić, Z.; Harrison, P.; et al. Terahertz imaging through self-mixing in a quantum cascade laser. Opt. Lett. 2011, 36, 2587–2589. [Google Scholar] [CrossRef]
- Dean, P.; Valavanis, A.; Keeley, J.; Bertling, K.; Lim, Y.; Alhathlool, R.; Burnett, A.; Li, L.; Khanna, S.; Indjin, D.; et al. Terahertz imaging using quantum cascade lasers—A review of systems and applications. J. Phys. D Appl. Phys. 2014, 47, 374008. [Google Scholar] [CrossRef]
- Dean, P.; Mitrofanov, O.; Keeley, J.; Kundu, I.; Li, L.; Linfield, E.H.; Giles Davies, A. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser. Appl. Phys. Lett. 2016, 108, 091113. [Google Scholar] [CrossRef]
- Degl’Innocenti, R.; Wallis, R.; Wei, B.; Xiao, L.; Kindness, S.J.; Mitrofanov, O.; Braeuninger-Weimer, P.; Hofmann, S.; Beere, H.E.; Ritchie, D.A. Terahertz nanoscopy of plasmonic resonances with a quantum cascade laser. ACS Photonics 2017, 4, 2150–2157. [Google Scholar] [CrossRef]
- Giordano, M.C.; Mastel, S.; Liewald, C.; Columbo, L.L.; Brambilla, M.; Viti, L.; Politano, A.; Zhang, K.; Li, L.; Davies, A.G.; et al. Phase-resolved terahertz self-detection near-field microscopy. Opt. Express 2018, 26, 18423–18435. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, D.; Pepper, B.; Jeffrey, E.; Sonin, P.; Thon, S.M.; Bouwmeester, D. Optomechanical trampoline resonators. Opt. Express 2011, 19, 19708–19716. [Google Scholar] [CrossRef] [PubMed]
- Norte, R.A.; Moura, J.P.; Gröblacher, S. Mechanical resonators for quantum optomechanics experiments at room temperature. Phys. Rev. Lett. 2016, 116, 147202. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, C.; Müller, T.; Bourassa, A.; Sankey, J.C. Ultralow-noise SiN trampoline resonators for sensing and optomechanics. Phys. Rev. X 2016, 6, 021001. [Google Scholar] [CrossRef]
- Baldacci, L.; Pitanti, A.; Masini, L.; Arcangeli, A.; Colangelo, F.; Navarro-Urrios, D.; Tredicucci, A. Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode. Sci. Rep. 2016, 6, 31489. [Google Scholar] [CrossRef]
- Chien, M.H.; Steurer, J.; Sadeghi, P.; Cazier, N.; Schmid, S. Nanoelectromechanical position-sensitive detector with picometer resolution. ACS Photonics 2020, 7, 2197–2203. [Google Scholar] [CrossRef]
- Chowdhury, M.D.; Agrawal, A.R.; Wilson, D.J. Membrane-Based Optomechanical Accelerometry. Phys. Rev. Appl. 2023, 19, 024011. [Google Scholar] [CrossRef]
- Fischer, R.; McNally, D.P.; Reetz, C.; Assumpção, G.G.T.; Knief, T.; Lin, Y.; Regal, C.A. Spin detection with a micromechanical trampoline: Towards magnetic resonance microscopy harnessing cavity optomechanics. New J. Phys. 2019, 21, 043049. [Google Scholar] [CrossRef]
- Blaikie, A.; Miller, D.; Alemán, B.J. A fast and sensitive room-temperature graphene nanomechanical bolometer. Nat. Commun. 2019, 10, 4726. [Google Scholar] [CrossRef]
- Piller, M.; Hiesberger, J.; Wistrela, E.; Martini, P.; Luhmann, N.; Schmid, S. Thermal IR Detection With Nanoelectromechanical Silicon Nitride Trampoline Resonators. IEEE Sens. J. 2023, 23, 1066–1071. [Google Scholar] [CrossRef]
- Gregorat, L.; Cautero, M.; Vicarelli, L.; Giuressi, D.; Bagolini, A.; Tredicucci, A.; Cautero, G.; Pitanti, A. Highly dispersive multiplexed micromechanical device array for spatially resolved sensing and actuation. Microsyst. Nanoeng. 2024, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Alborghetti, L.; Bertoni, B.; Vicarelli, L.; Zanotto, S.; Roddaro, S.; Tredicucci, A.; Cautero, M.; Gregorat, L.; Cautero, G.; Cojocari, M.; et al. Enhanced sensitivity of sub-THz thermomechanical bolometers exploiting vibrational nonlinearity. arXiv 2024, arXiv:2411.09071. [Google Scholar]
- Ottomaniello, A.; Keeley, J.; Rubino, P.; Li, L.; Cecchini, M.; Linfield, E.H.; Davies, A.G.; Dean, P.; Pitanti, A.; Tredicucci, A. Optomechanical response with nanometer resolution in the self-mixing signal of a terahertz quantum cascade laser. Opt. Lett. 2019, 44, 5663–5666. [Google Scholar] [CrossRef]
- Vicarelli, L.; Tredicucci, A.; Pitanti, A. Micromechanical bolometers for subterahertz detection at room temperature. ACS Photonics 2022, 9, 360–367. [Google Scholar] [CrossRef]
- Wienold, M.; Schrottke, L.; Giehler, M.; Hey, R.; Anders, W.; Grahn, H. Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions. Electron. Lett. 2009, 45, 1030–1031. [Google Scholar] [CrossRef]
- Mohun, D.; Sulollari, N.; Salih, M.; Li, L.H.; Cunningham, J.E.; Linfield, E.H.; Davies, A.G.; Dean, P. Terahertz microscopy using laser feedback interferometry based on a generalised phase-stepping algorithm. Sci. Rep. 2024, 14, 3274. [Google Scholar] [CrossRef]
- Ottomaniello, A.; Vezio, P.; Tricinci, O.; Hoed, F.M.D.; Dean, P.; Tredicucci, A.; Mattoli, V. Highly conformable terahertz metasurface absorbers via two-photon polymerization on polymeric ultra-thin films. Nanophotonics 2023, 12, 1557–1570. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Agnew, G.; Grier, A.; Taimre, T.; Lim, Y.L.; Bertling, K.; Ikonić, Z.; Valavanis, A.; Dean, P.; Cooper, J.; Khanna, S.P.; et al. Model for a pulsed terahertz quantum cascade laser under optical feedback. Opt. Express 2016, 24, 20554–20570. [Google Scholar] [CrossRef]
- Yakubovsky, D.I.; Arsenin, A.V.; Stebunov, Y.V.; Fedyanin, D.Y.; Volkov, V.S. Optical constants and structural properties of thin gold films. Opt. Express 2017, 25, 25574–25587. [Google Scholar] [CrossRef] [PubMed]
- Sytchkova, A.; Belosludtsev, A.; Volosevičienė, L.; Juškėnas, R.; Simniškis, R. Optical, structural and electrical properties of sputtered ultrathin chromium films. Opt. Mater. 2021, 121, 111530. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vezio, P.; Ottomaniello, A.; Vicarelli, L.; Salih, M.; Li, L.; Linfield, E.; Dean, P.; Mattoli, V.; Pitanti, A.; Tredicucci, A. Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser. Photonics 2025, 12, 273. https://doi.org/10.3390/photonics12030273
Vezio P, Ottomaniello A, Vicarelli L, Salih M, Li L, Linfield E, Dean P, Mattoli V, Pitanti A, Tredicucci A. Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser. Photonics. 2025; 12(3):273. https://doi.org/10.3390/photonics12030273
Chicago/Turabian StyleVezio, Paolo, Andrea Ottomaniello, Leonardo Vicarelli, Mohammed Salih, Lianhe Li, Edmund Linfield, Paul Dean, Virgilio Mattoli, Alessandro Pitanti, and Alessandro Tredicucci. 2025. "Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser" Photonics 12, no. 3: 273. https://doi.org/10.3390/photonics12030273
APA StyleVezio, P., Ottomaniello, A., Vicarelli, L., Salih, M., Li, L., Linfield, E., Dean, P., Mattoli, V., Pitanti, A., & Tredicucci, A. (2025). Membrane-Mediated Conversion of Near-Infrared Amplitude Modulation into the Self-Mixing Signal of a Terahertz Quantum Cascade Laser. Photonics, 12(3), 273. https://doi.org/10.3390/photonics12030273