An Optically Transparent Metasurface for Microwave Amplitude–Phase Manipulation
Abstract
:1. Introduction
2. Results
2.1. Design of the Meta-Atom
2.2. Multiplane Complex-Amplitude Hologram
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-Index Meta-Surfaces as a Bridge Linking Propagating Waves and Surface Waves. Nat. Mater. 2012, 11, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Zhang, Y.; Li, H.; Dong, H.; Zhang, L. Ultra-Broadband, Tunable, and Transparent Microwave Meta-Absorber Using ITO and Water Substrate. Adv. Opt. Mater. 2023, 11, 2202873. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, C.; Zhang, Y.; Li, H.; Wang, J.; Jiang, R.; Chen, K.; Dong, H.; Zhang, L. Transparent Bilayer ITO Metasurface with Bidirectional and Coherently Controlled Microwave Absorption. Adv. Opt. Mater. 2023, 11, 2301268. [Google Scholar] [CrossRef]
- Zheng, C.-L.; Ni, P.-N.; Xie, Y.-Y.; Genevet, P. On-Chip Light Control of Semiconductor Optoelectronic Devices Using Integrated Metasurfaces. Opto-Electron. Adv. 2025, 8, 240159-1–240159-26. [Google Scholar] [CrossRef]
- Xu, H.X.; Xu, J.; Wang, Y.; Wang, C.; Zhang, F.; Hu, G. Multichannel Metasurfaces with Frequency-Direction Multiplexed Amplitude and Phase Modulations. Adv. Opt. Mater. 2023, 11, 2301299. [Google Scholar] [CrossRef]
- He, G.; Zheng, Y.; Zhou, C.; Li, S.; Shi, Z.; Deng, Y.; Zhou, Z.-K. Multiplexed Manipulation of Orbital Angular Momentum and Wavelength in Metasurfaces Based on Arbitrary Complex-Amplitude Control. Light Sci. Appl. 2024, 13, 98. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, X.; Xu, Q.; Wang, L.; Li, Y.; Jiang, X.; Wang, Q.; Zhang, W.; Han, J. Heterogeneous-Gradient Supercell Metasurfaces for Independent Complex Amplitude Control over Multiple Diffraction Channels. Small 2025, 21, 2407303. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Kenney, M.; Su, X.; Xu, N.; Ouyang, C.; Shi, Y.; Han, J.; Zhang, W.; Zhang, S. Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude. Adv. Mater. 2014, 26, 5031–5036. [Google Scholar] [CrossRef]
- Deng, M.; Cotrufo, M.; Wang, J.; Dong, J.; Ruan, Z.; Alù, A.; Chen, L. Broadband Angular Spectrum Differentiation Using Dielectric Metasurfaces. Nat. Commun. 2024, 15, 2237. [Google Scholar] [CrossRef]
- Ren, H.; Fang, X.; Jang, J.; Bürger, J.; Rho, J.; Maier, S.A. Complex-Amplitude Metasurface-Based Orbital Angular Momentum Holography in Momentum Space. Nat. Nanotechnol. 2020, 15, 948–955. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Jin, M.; Ye, X.; Wang, S.; Shi, T.; Deng, J.; Mao, N.; Cao, Y.; Guan, B.; Alù, A.; et al. Full-Color Complex-Amplitude Vectorial Holograms Based on Multi-Freedom Metasurfaces. Adv. Funct. Mater. 2020, 30, 1910610. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, W.; Huo, P.; Feng, L.; Song, M.; Zhang, C.; Chen, L.; Lezec, H.J.; Lu, Y.; Agrawal, A.; et al. Multifunctional Metasurfaces Enabled by Simultaneous and Independent Control of Phase and Amplitude for Orthogonal Polarization States. Light Sci. Appl. 2021, 10, 107. [Google Scholar] [CrossRef]
- Liu, T.; Fu, X.; Wang, J.; Meng, Y.; Ma, H.; Li, X.; Zhu, R.; Wang, X.; Li, W.; Tang, W.; et al. Single-Layer Achiral Metasurface with Independent Amplitude–Phase Control for Both Left-Handed and Right-Handed Circular Polarizations. ACS Appl. Mater. Interfaces 2022, 14, 33968–33975. [Google Scholar] [CrossRef] [PubMed]
- Kowerdziej, R.; Jaroszewicz, L. Active Control of Terahertz Radiation Using a Metamaterial Loaded with a Nematic Liquid Crystal. Liq. Cryst. 2016, 43, 1120–1125. [Google Scholar] [CrossRef]
- Buchnev, O.; Wallauer, J.; Walther, M.; Kaczmarek, M.; Zheludev, N.I.; Fedotov, V.A. Controlling Intensity and Phase of Terahertz Radiation with an Optically Thin Liquid Crystal-Loaded Metamaterial. Appl. Phys. Lett. 2013, 103, 141904. [Google Scholar] [CrossRef]
- Wu, L.-X.; Zhang, N.; Qu, K.; Chen, K.; Jiang, T.; Zhao, J.; Feng, Y. Transmissive Metasurface with Independent Amplitude/Phase Control and Its Application to Low-Side-Lobe Metalens Antenna. IEEE Trans. Antennas Propag. 2022, 70, 6526–6536. [Google Scholar] [CrossRef]
- Overvig, A.C.; Shrestha, S.; Malek, S.C.; Lu, M.; Stein, A.; Zheng, C.; Yu, N. Dielectric Metasurfaces for Complete and Independent Control of the Optical Amplitude and Phase. Light Sci. Appl. 2019, 8, 92. [Google Scholar] [CrossRef]
- Liu, Y.; Luk, K.-M. An Optically Transparent Magnetoelectric Dipole Antenna Design by Integrating Flexible Transparent Metal Mesh Film on Glass. IEEE Trans. Antennas Propag. 2024, 72, 5569–5577. [Google Scholar] [CrossRef]
- Silva, Z.J.; Valenta, C.R.; Durgin, G.D. Optically Transparent Antennas: A Survey of Transparent Microwave Conductor Performance and Applications. IEEE Antennas Propag. Mag. 2021, 63, 27–39. [Google Scholar] [CrossRef]
- Tang, J.; Meng, X.; Qian, B.; Chen, R.; Yi, J.; Cheng, Q.; Chen, X. Optically Transparent Anisotropic Holographic Impedance Metasurface for Launching Orbital Angular Momentum Vortex Wave. J. Phys. D Appl. Phys. 2023, 56, 395001. [Google Scholar] [CrossRef]
- Ruan, Y.; Nie, Q.F.; Chen, L.; Cui, H.Y. Optical Transparent and Reconfigurable Metasurface with Autonomous Energy Supply. J. Phys. D Appl. Phys. 2020, 53, 065301. [Google Scholar] [CrossRef]
- Jiang, R.Z.; Ma, Q.; Liang, J.C.; Zhou, Q.Y.; Dai, J.Y.; Cheng, Q.; Cui, T.J. A Single-Layered Wideband and Wide-Angle Transparent Metasurface for Enhancing the EM-Wave Transmissions Through Glass. IEEE Trans. Antennas Propag. 2023, 71, 6593–6605. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, B.; Lu, Z.; Wang, H.; Han, L.; Tan, J. A Visible-near-Infrared Transparent Miniaturized Frequency-Selective Metasurface with a Microwave Transmission Window. Nanoscale 2024, 16, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Liu, Y.; Lu, Z.; Zhang, Y.; Wang, H.; Ji, R.; Tan, J. High-Transmittance Double-Layer Frequency-Selective Surface Based on Interlaced Multiring Metallic Mesh. Opt. Lett. 2019, 44, 1253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.; Ge, J.; Zhang, C.; Li, J.; Zhang, C.; Deng, R.; Zhang, Y.; Dong, H.; Zhang, L. Highly Visible–NIR Transparent Metamaterial-Window for Broadband Microwave Absorption and Shielding. Adv. Mater. Technol. 2023, 8, 2301014. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Li, S.; Tian, J.; Cong, L.; Yang, H.; Cao, X. Optically Transparent Complex-Amplitude Metasurface for Full-Space Manipulation of Frequency-Multiplexed Holographic Imaging. ACS Appl. Mater. Interfaces 2024, 16, 65635–65644. [Google Scholar] [CrossRef]
- Li, X.M.; Xi, X.; Chen, J.; Wu, H.B.; Li, X.; Chen, Q.; Wu, R. Stereo Meta-Atom Enabled Phase–Amplitude Gradient Metasurface for Circularly Polarized Waves. Adv. Opt. Mater. 2022, 10, 2200326. [Google Scholar] [CrossRef]
- Zheng, S.; Hao, H.; Tang, Y.; Ran, X. High-Purity Orbital Angular Momentum Vortex Beam Generator Using an Amplitude-and-Phase Metasurface. Opt. Lett. 2021, 46, 5790. [Google Scholar] [CrossRef]
- Qu, K.; Chen, K.; Hu, Q.; Yang, W.; Zhao, J.; Jiang, T.; Feng, Y. Interference-Assisted Independent Amplitude and Phase Manipulation with Broadband Chiral Meta-Mirror. Adv. Opt. Mater. 2024, 12, 2400312. [Google Scholar] [CrossRef]
- Yang, L.-J.; Sun, S.; Xu, H.-X.; Qiu, C.-W. Broadband Amplitude–Phase Metasurface for Generating Crosstalk-Free Amplitude-Modulated Vortex Beams. IEEE Trans. Antennas Propag. 2025, 73, 421–431. [Google Scholar] [CrossRef]
- Xu, J.; Li, R.; Qin, J.; Wang, S.; Han, T. Ultra-Broadband Wide-Angle Linear Polarization Converter Based on H-Shaped Metasurface. Opt. Express 2018, 26, 20913. [Google Scholar] [CrossRef] [PubMed]
- Hassanfiroozi, A.; Lu, Y.C.; Wu, P.C. Hybrid Anapole Induced Chirality in Metasurfaces. Adv. Mater. 2024, 36, 2410568. [Google Scholar] [CrossRef] [PubMed]
- Catrysse, P.B.; Fan, S. Nanopatterned Metallic Films for Use as Transparent Conductive Electrodes in Optoelectronic Devices. Nano Lett. 2010, 10, 2944–2949. [Google Scholar] [CrossRef]
- Dong, F.-Y.; Xu, S.; Guo, W.; Jiang, N.-R.; Han, D.-D.; He, X.-Y.; Zhang, L.; Wang, Z.-J.; Feng, J.; Su, W.; et al. Solar-Energy Camouflage Coating with Varying Sheet Resistance. Nano Energy 2020, 77, 105095. [Google Scholar] [CrossRef]
- Balthasar Mueller, J.P.; Rubin, N.A.; Devlin, R.C.; Groever, B.; Capasso, F. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. Phys. Rev. Lett. 2017, 118, 113901. [Google Scholar] [CrossRef]
- Li, S.; Chen, C.; Wang, G.; Ge, S.; Zhao, J.; Ming, X.; Zhao, W.; Li, T.; Zhang, W. Metasurface Polarization Optics: Phase Manipulation for Arbitrary Polarization Conversion Condition. Phys. Rev. Lett. 2025, 134, 023803. [Google Scholar] [CrossRef]
- Kang, H.; Kim, H.; Kim, K.; Rho, J. Printable Spin-Multiplexed Metasurfaces for Ultraviolet Holographic Displays. ACS Nano 2024, 18, 21504–21511. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Xu, Y.; Gu, J.; Li, Y.; Tian, Z.; Singh, R.; Zhang, S.; Han, J.; Zhang, W. Broadband Metasurface Holograms: Toward Complete Phase and Amplitude Engineering. Sci. Rep. 2016, 6, 32867. [Google Scholar] [CrossRef]
- Chen, B.; Yang, S.; Chen, J.; Wu, J.; Chen, K.; Li, W.; Tan, Y.; Wang, Z.; Qiu, H.; Fan, K.; et al. Directional Terahertz Holography with Thermally Active Janus Metasurface. Light Sci. Appl. 2023, 12, 136. [Google Scholar] [CrossRef]
- Bao, L.; Wu, R.Y.; Fu, X.; Ma, Q.; Bai, G.D.; Mu, J.; Jiang, R.; Cui, T.J. Multi-Beam Forming and Controls by Metasurface with Phase and Amplitude Modulations. IEEE Trans. Antennas Propag. 2019, 67, 6680–6685. [Google Scholar] [CrossRef]
- Ahmed, H.; Ansari, M.A.; Paterson, L.; Li, J.; Chen, X. Metasurface for Engineering Superimposed Ince-Gaussian Beams. Adv. Mater. 2024, 36, 2312853. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface Holograms for Visible Light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef]
- Wen, D.; Yue, F.; Li, G.; Zheng, G.; Chan, K.; Chen, S.; Chen, M.; Li, K.F.; Wong, P.W.H.; Cheah, K.W.; et al. Helicity Multiplexed Broadband Metasurface Holograms. Nat. Commun. 2015, 6, 8241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, W.; Qi, B.; Feng, J.; Niu, T.; Mei, Z. Ultrawideband 3-Bit Multifunctional Metasurfaces by Completely Spin-Decoupled Meta-Atom. Opt. Express 2024, 32, 32753. [Google Scholar] [CrossRef]
- Ge, J.; Wang, Y.; Zhang, Y.; Long, C.; Wang, X.; Zhang, C.; Dong, H.; Zhang, L. Multispectral Metasurface for Visible Transparency, Infrared Stealth, and Mm-Wave Frequency-Multiplexing. Mater. Des. 2025, 253, 113903. [Google Scholar] [CrossRef]
- Tang, J.; Meng, X.; Shi, H.; Yi, J.; Chen, X.; Huang, G.-L.; Manuel Fernández González, J.; Cheng, Q. Wideband Optically Transparent Low-Profile Holographic Impedance Metasurface for Multimode OAM Generation. IEEE Trans. Microw. Theory Techn. 2025, 73, 726–735. [Google Scholar] [CrossRef]
- Gu, T.; Kim, H.J.; Rivero-Baleine, C.; Hu, J. Reconfigurable Metasurfaces towards Commercial Success. Nat. Photon. 2023, 17, 48–58. [Google Scholar] [CrossRef]
- Xiong, B.; Liu, Y.; Xu, Y.; Deng, L.; Chen, C.-W.; Wang, J.-N.; Peng, R.; Lai, Y.; Liu, Y.; Wang, M. Breaking the Limitation of Polarization Multiplexing in Optical Metasurfaces with Engineered Noise. Science 2023, 379, 294–299. [Google Scholar] [CrossRef]
- Ma, Z.; Tian, T.; Liao, Y.; Feng, X.; Li, Y.; Cui, K.; Liu, F.; Sun, H.; Zhang, W.; Huang, Y. Electrically Switchable 2N-Channel Wave-Front Control for Certain Functionalities with N Cascaded Polarization-Dependent Metasurfaces. Nat. Commun. 2024, 15, 8370. [Google Scholar] [CrossRef]
- Guan, C.; Cai, T.; Zhu, L.; Han, J.; Ding, C.; Burokur, S.N.; Wu, Q.; Ding, X. Guided and Space Waves Multiplexed Metasurface for Advanced Electromagnetic Functionalities in Microwave Region. Adv. Mater. 2025, 37, 2417724. [Google Scholar] [CrossRef] [PubMed]
Ref. | Material | Center Frequency | Manipulation Approach | Function | Optical Transparency |
---|---|---|---|---|---|
[28] | Metal | 11.1 GHz | Amplitude–phase | Beamforming | None |
[29] | Metal | 28 GHz | Amplitude–phase | OAM generation | None |
[30] | Metal | 13 GHz | Amplitude–phase | Airy beam generation | None |
[31] | Metal | 13 GHz | Amplitude–phase | OAM generation | None |
[46] | ITO | 24.5/41 GHz | Phase | Hologram | 46% |
[47] | ITO | 20 GHz | Phase | OAM generation | Yes |
This work | Metal frame | 16 GHz | Amplitude–phase | Hologram | 63.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Ge, J.; Zhang, Y.; Jiang, X.; Zhang, C.; Dong, H.; Zhang, L. An Optically Transparent Metasurface for Microwave Amplitude–Phase Manipulation. Photonics 2025, 12, 384. https://doi.org/10.3390/photonics12040384
Xue H, Ge J, Zhang Y, Jiang X, Zhang C, Dong H, Zhang L. An Optically Transparent Metasurface for Microwave Amplitude–Phase Manipulation. Photonics. 2025; 12(4):384. https://doi.org/10.3390/photonics12040384
Chicago/Turabian StyleXue, Hanyu, Jiahao Ge, Yaqiang Zhang, Xianwu Jiang, Cheng Zhang, Hongxing Dong, and Long Zhang. 2025. "An Optically Transparent Metasurface for Microwave Amplitude–Phase Manipulation" Photonics 12, no. 4: 384. https://doi.org/10.3390/photonics12040384
APA StyleXue, H., Ge, J., Zhang, Y., Jiang, X., Zhang, C., Dong, H., & Zhang, L. (2025). An Optically Transparent Metasurface for Microwave Amplitude–Phase Manipulation. Photonics, 12(4), 384. https://doi.org/10.3390/photonics12040384