Multifunctional Hierarchical Metamaterials: Synergizing Visible-Laser-Infrared Camouflage with Thermal Management
Abstract
:1. Introduction
2. Design and Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, K.K.; Li, Q.; Lyu, Y.B.; Ding, J.C.; Lu, Y.; Cheng, Z.Y.; Qiu, M. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci. Appl. 2017, 6, e16194. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Huang, Y.; Li, Q.; Luo, H.; Zhu, H.; Kaur, S.; Qiu, M. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 2020, 69, 104449. [Google Scholar] [CrossRef]
- Yu, K.; Zhang, W.; Qian, M.; Shen, P.; Liu, Y. Multiband metamaterial emitters for infrared and laser compatible stealth with thermal management based on dissipative dielectrics. Photonics Res. 2023, 11, 290–298. [Google Scholar] [CrossRef]
- Kang, Q.; Li, D.; Wang, W.; Guo, K.; Guo, Z. Multiband tunable thermal camouflage compatible with laser camouflage based on GST plasmonic metamaterial. J. Phys. D Appl. Phys. 2021, 55, 065103. [Google Scholar] [CrossRef]
- Wu, L.; Yang, L.; Zhu, X.; Cai, B.; Cheng, Y. Ultra-broadband and wide-angle plasmonic absorber based on all-dielectric gallium arsenide pyramid nanostructure for full solar radiation spectrum range. Int. J. Therm. Sci. 2024, 201, 109043. [Google Scholar] [CrossRef]
- Liu, B.; Chen, Z.S.; Li, Z.G.; Shi, J.M.; Zhao, D.P.; Liu, L.P.; Wang, H. Design and preparation of multispectral stealth photonic crystals for visible light, infrared radiation, and 1.06-μm laser. Opt. Eng. 2020, 59, 127107. [Google Scholar] [CrossRef]
- Fleming, J.G.; Lin, S.Y.; El-Kady, I.; Biswas, R.; Ho, K.M. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 2002, 417, 52–55. [Google Scholar] [CrossRef]
- Luo, J.; Lai, Y. Near-perfect absorption by photonic crystals with a broadband and omnidirectional impedance-matching property. Opt. Express 2019, 27, 15800–15811. [Google Scholar] [CrossRef]
- Tong, H.; Li, H.; Huang, H.; Wu, A.; Cao, T.; Guo, D. Achievement of low infrared emissivity photonic crystal design on [CdSe/SiO2]N periodic films. Opt. Laser Technol. 2022, 156, 108557. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Q.; Tao, C.; Hong, Y.; Xu, Z.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 2021, 12, 1805. [Google Scholar] [CrossRef]
- Jiang, X.; Yuan, H.; He, X.; Du, T.; Ma, H.; Li, X.; Luo, M.; Zhang, Z.; Chen, H.; Yu, Y.; et al. Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics 2023, 12, 1891–1902. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Su, Y.; Qin, W.; Wang, T.; Wang, X.; Gong, R. Nanostructured Ge/ZnS films for multispectral camouflage with low visibility and low thermal emission. ACS Appl. Nano Mater. 2022, 5, 5119–5127. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Y.; Qin, B.; Zhou, Y.; Qin, R.; Ghosh, P.; Qiu, M.; Li, Q. Hierarchical visible-infrared- microwave scattering surfaces for multispectral camouflage. Nanophotonics 2022, 11, 3613–3622. [Google Scholar] [CrossRef]
- Feng, X.; Pu, M.; Zhang, F.; Pan, R.; Wang, S.; Gong, J.; Zhang, R.; Guo, Y.; Li, X.; Ma, X.; et al. Large-area low-cost multiscale-hierarchical metasurfaces for multispectral compatible camouflage of cual-band lasers, infrared and microwave. Adv. Funct. Mater. 2022, 32, 2205547. [Google Scholar] [CrossRef]
- Park, C.; Kim, J.; Hahn, J.W. Integrated infrared signature management with multispectral selective absorber via single-port grating resonance. Adv. Opt. Mater. 2021, 9, 2002225. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Y.; Yuan, L.; Huang, C.; Liao, J.; Ji, C.; Luo, X. Large-area and flexible plasmonic metasurface for laser–infrared compatible camouflage. Laser Photonics Rev. 2023, 17, 2200616. [Google Scholar] [CrossRef]
- Zhou, Y.; Layani, M.; Boey, F.Y.C.; Sokolov, I.; Magdassi, S.; Long, Y. Electro-thermochromic devices composed of self-assembled transparent electrodes and hydrogels. Adv. Mater. Technol. 2016, 1, 1600069. [Google Scholar] [CrossRef]
- Meng, W.; Kragt, A.J.; Gao, Y.; Brembilla, E.; Hu, X.; Burgt, J.S.; Schenning, A.P.H.J.; Klein, T.; Zhou, G.; Ham, E.R.; et al. Scalable photochromic film for solar heat and daylight management. Adv. Mater. 2024, 36, 2304910. [Google Scholar] [CrossRef]
- Ma, T.; Li, B.; Zhu, Y.; Wu, S.; Zhao, X.; Chu, X.; Tian, S. Enhanced photochromic performance of Zn-doped W18O49-based films for smart windows. J. Mater. Chem. C 2024, 12, 10218–10225. [Google Scholar] [CrossRef]
- Xu, C.; Colorado Escobar, M.; Gorodetsky, A.A. Stretchable cephalopod-inspired multimodal camouflage systems. Adv. Mater. 2020, 32, 1905717. [Google Scholar] [CrossRef]
- Li, D.; Chen, Q.; Huang, J.; Xu, H.; Lu, Y.; Song, W. Scalable-manufactured metamaterials for simultaneous visible transmission, infrared reflection, and microwave absorption. ACS Appl. Mater. Interfaces 2022, 14, 33933–33943. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Balanis, C.A.; Birtcher, C.R. Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Trans. Antennas Propag. 2015, 63, 2636–2645. [Google Scholar] [CrossRef]
- Galarregui, J.C.I.; Pereda, A.T.; De Falcon, J.L.M.; Ederra, I.; Gonzalo, R.; De Maagt, P. Broadband radar cross-section reduction using AMC technology. IEEE Trans. Antennas Propag. 2013, 61, 6136–6143. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; Dong, J.; Ma, L.; Zheng, C.; Zhang, W.; Liu, L. Multi-band infrared camouflage compatible with radiative cooling and visible colors via a simple multilayer film structure. Opt. Mater. Express 2023, 13, 2746. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, B.; Pattanayak, A.; Kaur, S.; Qiu, M.; Li, Q. Infrared camouflage utilizing ultrathin flexible large-scale high-temperature-tolerant lambertian surfaces. Laser Photonics Rev. 2021, 15, 2000391. [Google Scholar] [CrossRef]
- Deng, Z.; Hu, W.; Zhou, P.; Huang, L.; Wang, T.; Wang, X.; Gong, R. Broadband tunable laser and infrared camouflage by wavelength-selective scattering metamaterial with radiative thermal management. Opt. Lett. 2024, 49, 935–938. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Jiang, X.; Zeng, J.; Liao, X.; Chen, Y.; Xiao, S.; Zhao, F.; Chen, H.; Yang, J.; et al. Multispectral camouflage nanostructure design based on a particle swarm optimization algorithm for color camouflage, infrared camouflage, laser stealth, and heat dissipation. Opt. Express 2023, 31, 44811–44822. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.; Hahn, J.W. Metal–semiconductor–metal metasurface for multiband infrared stealth technology using camouflage color pattern in visible range. Adv. Opt. Mater. 2022, 10, 2101930. [Google Scholar] [CrossRef]
Structure | Material | Camouflage Band (μm) | Thermal Management (μm) | Ref. | ||||||
Visible | Laser | Infrared | ||||||||
1.06 | 1.55 | 10.6 | 3–5 | 8–14 | 2.5–3 | 5–8 | ||||
9-layer film | SiO2/Ge/TiO2 | √ | √ | × | √ | √ | √ | × | √ | [24] |
7-layer film | Au/ZnS/Ge/Pt/SiO2 | × | √ | √ | √ | √ | √ | × | √ | [11] |
Lambert | Al | × | √ | √ | √ | √ | × | × | [25] | |
Meta-surface | Ge/ZnS | × | √ | √ | √ | √ | √ | × | √ | [26] |
Meta-surface | Au/Ge/Ti/Ge | × | √ | √ | √ | √ | √ | × | × | [16] |
Meta-surface | ZnS/Ge/SiO2/Pt/Au/Ag | × | √ | √ | √ | √ | √ | × | √ | [27] |
Meta-surface | Al/Ge/Ag | √ | √ | × | × | √ | √ | × | × | [28] |
Meta-surface | SiC/Ag/ITO | √ | √ | √ | √ | √ | √ | √ | √ | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Huang, H.; Huang, Z.; Tian, C.; Guo, L.; Liu, Y.; Liu, S. Multifunctional Hierarchical Metamaterials: Synergizing Visible-Laser-Infrared Camouflage with Thermal Management. Photonics 2025, 12, 387. https://doi.org/10.3390/photonics12040387
Wu S, Huang H, Huang Z, Tian C, Guo L, Liu Y, Liu S. Multifunctional Hierarchical Metamaterials: Synergizing Visible-Laser-Infrared Camouflage with Thermal Management. Photonics. 2025; 12(4):387. https://doi.org/10.3390/photonics12040387
Chicago/Turabian StyleWu, Shenglan, Hao Huang, Zhenyong Huang, Chunhui Tian, Lina Guo, Yong Liu, and Shuang Liu. 2025. "Multifunctional Hierarchical Metamaterials: Synergizing Visible-Laser-Infrared Camouflage with Thermal Management" Photonics 12, no. 4: 387. https://doi.org/10.3390/photonics12040387
APA StyleWu, S., Huang, H., Huang, Z., Tian, C., Guo, L., Liu, Y., & Liu, S. (2025). Multifunctional Hierarchical Metamaterials: Synergizing Visible-Laser-Infrared Camouflage with Thermal Management. Photonics, 12(4), 387. https://doi.org/10.3390/photonics12040387