Orthogonally Polarized Dual-Wavelength Pr:LLF Green Laser at 546 nm and 550 nm with the Balanced Output Powers at All Pump Power Level
Abstract
:1. Introduction
2. Theoretical Analysis
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, J.; Lü, Y.; Liu, H.; Pu, X. Diode-pumped Pr3+:LiYF4 visible dual-wavelength laser. Opt. Commun. 2015, 334, 160–163. [Google Scholar] [CrossRef]
- Kaneda, Y.; Tanaka, H.; Temyanko, V. Diode-pumped Sm:YLF laser at 605 nm and 648 nm. Opt. Express 2025, 33, 8903–8910. [Google Scholar] [CrossRef]
- Du, E.; Zheng, H.; He, H.; Li, S.; Qiu, C.; Zhang, W.; Wang, G.; Li, X.; Ma, L.; Shen, S.; et al. Dual-wavelength confocal laser speckle contrast imaging using a deep learning approach. Photonics 2024, 11, 1085. [Google Scholar] [CrossRef]
- Mu, T.; Zhang, C.; Ren, W.; Jia, C. Static polarization-difference interference imaging spectrometer. Opt. Lett. 2012, 37, 3507–3509. [Google Scholar] [CrossRef]
- Sun, J.; Yu, C.; Dong, Y.; Wu, C.; Jin, G. 1064/1319 nm dual-wavelength alternating electro-optic q-switched laser based on the common q-switching bias voltage. Photonics 2023, 10, 609. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Zhu, X.; Wang, C.; Yang, C. Intra-cavity cascaded pumped 946/1030 nm dual-wavelength vortex laser using a spot-defect mirror. Photonics 2023, 10, 554. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, Y.; Li, Y. Orthogonally polarized dual frequency lasers and applications in self-sensing metrology. Meas. Sci. Technol. 2010, 21, 054016. [Google Scholar] [CrossRef]
- Huang, Y.; Cho, C.; Huang, Y.; Chen, Y. Orthogonally polarized dual-wavelength Nd: LuVO4 laser at 1086 nm and 1089 nm. Opt. Express 2012, 20, 5644–5651. [Google Scholar] [CrossRef]
- Hu, G.; Cui, J.; Tian, F.; Gao, Z.; Yan, S.; Liu, S.; Zhang, X.; Li, L. Orthogonally polarized dual-wavelength gain-switched ho:lulif4 pulse laser. Photonics 2023, 10, 62. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Li, Y.; Xia, J. Orthogonally polarized dual-wavelength Nd:LiYF4 laser at 903 and 908 nm on 4F3/2→4I9/2 transition. Opt. Laser Technol. 2025, 180, 111510. [Google Scholar] [CrossRef]
- Huang, H.; Li, Y.; Zhang, Y.; Zhang, Q.; Wang, S.; Li, C.; Dong, Y.; Xia, J. Research on output power ratio of dual-wavelength Nd:NaLa(WO4)2 laser on 4F3/2→4I13/2 transition. Opt. Laser Technol. 2025, 181, 112043. [Google Scholar] [CrossRef]
- Waritanant, T.; Major, A. Dual-wavelength operation of a diode-pumped Nd:YVO4 laser at the 1064.1 & 1073.1 nm and 1064.1 & 1085.3 nm wavelength pairs. Appl. Phys. B 2018, 124, 87. [Google Scholar]
- Zheng, Y.; Zhong, K.; Qiao, H.; Zhang, X.; Li, F.; Sun, Y.; Wang, S.; Xu, D.; Yao, J. Compact, efficient and power-ratio tunable orthogonally polarized Nd:YVO4 laser with coaxial diode-end-pumping configuration. Opt. Commun. 2022, 523, 128739. [Google Scholar] [CrossRef]
- Lin, H.; Bao, S.; Liu, X.; Song, S.; Wen, Z.; Sun, D. Dual-wavelength continuous-wave and passively q-switched alexandrite laser at 736.7 nm and 752.8 nm. Photonics 2022, 9, 769. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, K.; Mei, J.; Liu, C.; Shi, J.; Ding, X.; Xu, D.; Shi, W.; Yao, J. Compact and stable high-repetition-rate terahertz generation based on an efficient coaxially pumped dual-wavelength laser. Opt. Express 2017, 25, 31988–31996. [Google Scholar] [CrossRef]
- Gün, T.; Metz, P.; Huber, G. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: Efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm. Opt. Lett. 2011, 36, 1002–1004. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Yang, X.; Wang, S.; Li, C.; Dong, Y. Diode-pumped orthogonally polarized Sm: YAP orange lasers with output power ratio and wavelength tuning. Appl. Phys. B 2025, 131, 62. [Google Scholar] [CrossRef]
- Dai, W.; Wang, H.; Jin, L.; Liu, C.; Dong, Y.; Jin, G. Diode-pumped single-longitudinal-mode Pr3+:YLF laser based on combined fabry–perot etalons at 522.67 nm. Photonics 2023, 10, 971. [Google Scholar] [CrossRef]
- Lin, X.; Cui, S.; Ji, S.; Tian, Q.; Zhu, Y.; Li, W.; Xu, H.; Cai, Z. LD-pumped high-power high-efficiency orange vortex Pr3+: YLF lasers. Opt. Laser. Technol. 2021, 133, 106571. [Google Scholar] [CrossRef]
- Guo, H.; Yin, M.; Zhang, W. Upconversion of Er3+ Ions in LiKGdF5: Er3+, Dy3+ Single Crystal Produced by Infrared and Green Laser. J. Rare Earth 2006, 24, 740–744. [Google Scholar]
- Hadeethi, Y.A.; Kutbee, A.; Ahmed, M.; Sayyed, M.; Jagannath, G. Tuning of third-order nonlinear optical susceptibility of Eu3+ doped alkali borate glasses in visible region by embedding gold nanoparticles. Eur. Phys. J. Plus 2022, 137, 765. [Google Scholar] [CrossRef]
- Lin, X.; Chen, M.; Feng, Q.; Ji, S.; Cui, S.; Zhu, Y.; Xiao, B.; Li, W.; Xu, H.; Cai, Z. LD-pumped high-power CW Pr3+: YLF Laguerre-Gaussian lasers at 639 nm. Opt. Laser Technol. 2021, 142, 107273. [Google Scholar] [CrossRef]
- Dong, J.; Jin, L.; Jin, Y.; Dong, Y.; Yu, Y.; Jin, G. Direct generation of orthogonally polarized dual-wavelength double pulse Pr: YLF visible laser. Appl. Phys. B 2024, 130, 115. [Google Scholar] [CrossRef]
- Baiocco, D.; Lopez-Quintas, I.; Vázquez de Aldana, J.R.; Tonelli, M.; Tredicucci, A. Comparative performance analysis of femtosecond-laser-written diode-pumped Pr:LiLuF4 visible waveguide lasers. Photonics 2023, 10, 377. [Google Scholar] [CrossRef]
- Xue, Y.; Dai, R.; Xu, H.; Cai, Z. High-power single-longitudinal-mode visible Pr:YLF ring lasers. Opt. Laser Technol. 2025, 180, 111495. [Google Scholar] [CrossRef]
- Zhou, S.; Pan, Y.; Li, N.; Xu, B.; Liu, J.; Song, Q.; Xu, J.; Li, D.; Liu, P.; Xu, X. Spectroscopy and diode-pumped laser operation of Pr: LaMgAl11O19 crystal. Opt. Mater. 2019, 89, 14–17. [Google Scholar] [CrossRef]
- Tian, Q.; Xu, B.; Li, N.; Luo, Z.; Xu, H.; Cai, Z. Direct generation of orthogonally polarized dual-wavelength continuous-wave and passively Q-switched vortex beam in diode-pumped Pr:YLF lasers. Opt. Lett. 2019, 44, 5586–5589. [Google Scholar] [CrossRef]
- Dai, W.; Jin, L.; Liu, C.; Dong, Y.; Jin, G. 13.5 μj, 20 khz repetition rate, single frequency Pr3+:YLF master oscillator power amplifier system. Photonics 2023, 10, 903. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Lian, G.; Wang, Z.; Yu, H.; Zhang, H. 7.56-W continuous-wave Pr3+-based green laser via managing thermally induced effects. Opt. Express 2024, 32, 959–968. [Google Scholar] [CrossRef]
- Jin, L.; Jin, Y.; Yu, Y.; Dong, Y.; Jin, G. Orthogonally polarized dual-wavelength single longitudinal mode Pr:YLF laser at 607 nm and 604 nm. Opt. Commun. 2023, 530, 129180. [Google Scholar] [CrossRef]
- Ivanova, I.; Morozov, A.; Petrova, M.; Podkolzina, I.; Feofilov, P. Preparation and properties of single crystals of double fluorides of lithium and the rare earths. Inorg. Mater. 1975, 11, 1868. [Google Scholar]
- Cornacchia, F.; Toncelli, A.; Tonelli, M. 2 μm Lasers with fluoride crystals: Research and development. Prog. Quantum Electron. 2009, 33, 61–109. [Google Scholar] [CrossRef]
- Wang, G.; Gong, X.; Lin, Y.; Chen, Y.; Huang, J.; Luo, Z.; Huang, Y. Polarized spectral properties of Sm3+:LiLuF4 crystal for visible laser application. Opt. Mater. 2014, 37, 229–234. [Google Scholar] [CrossRef]
- Kaminskii, A.; Ueda, K.; Uehara, N.; Verdun, H. Room-temperature diodelaser- pumped efficient CW and Quasi-CW single-mode lasers based on Nd3+-doped cubic disordered a-NaCaYF6 and tetragonal ordered LiLuF4 crystals. Phys. Status Solidi A 1993, 140, K45. [Google Scholar] [CrossRef]
- Coluccelli, N.; Galzerano, G.; Laporta, P.; Cornacchia, F.; Parisi, D.; Tonelli, M. Tmdoped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 µm. Opt. Lett. 2007, 32, 2040–2042. [Google Scholar] [CrossRef] [PubMed]
- Schellhorn, M. A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers in CW and Q-switched operation under identical pump conditions. Appl. Phys. B 2011, 103, 777–778. [Google Scholar] [CrossRef]
- Yin, G.; Hang, Y.; He, X.; Zhang, L.; Zhao, C.; Gong, J.; Zhang, P. Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room temperature. Laser Phys. Lett. 2012, 9, 126–130. [Google Scholar] [CrossRef]
- Cornacchia, F.; Richter, A.; Heumann, E.; Huber, G.; Parisi, D.; Tonelli, M. Visible laser emission of solid state pumped LiLuF4:Pr3+. Opt. Express 2007, 15, 992–1002. [Google Scholar] [CrossRef]
- Huber, G.; Krühler, W.; Bludau, W.; Danielmeyer, H. Anisotropy in the laser performance of NdP5O14. J. Appl. Phys. 1975, 46, 3580–3584. [Google Scholar] [CrossRef]
- Kent, O.; Smollin, C. Carbon monoxide poisoning (acute). BMJ Clin. Evid. 2010, 7, 2103. [Google Scholar]
- Kumamoto, Y.; Taguchi, A.; Kawata, S. Deep-ultraviolet biomolecular imaging and analysis. Adv. Opt. Mater. 2019, 7, 1801099. [Google Scholar] [CrossRef]
- Feng, K.; Wang, D.; Zhu, Y.; Xu, B.; Chen, Z.; Baesso, M.L.; Catunda, T. Simple and compact high-power continuous-wave deep ultraviolet source at 261 nm based on diode-pumped intra-cavity frequency doubled Pr:LiYF4 green laser. Opt. Express 2023, 31, 18799–18806. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zheng, Q.; Chen, X.; Wang, J.; Xiao, H.; Wang, Y.; Wang, Y.; Liu, H.; Tian, D. 2.53 W of 261 nm continuous wave generation in a pr: YLF laser pumped by blue laser diode at 444.2 nm. Appl. Phys. B 2024, 130, 142. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Baer, T. Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers. J. Opt. Soc. Am. B 1986, 3, 1175–1180. [Google Scholar] [CrossRef]
- Innocenzi, M.; Yura, H.; Fincher, C.; Fields, R. Thermal modeling of continuous-wave end pumped solid-state lasers. Appl. Phys. Lett. 1990, 56, 1831–1833. [Google Scholar] [CrossRef]
- Koechner, W. Solid-State Laser Engineering; Springer: Heidelberg, Germany, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Xia, J.; Anh, N.; Li, Y.; Zhang, Y.; Zhang, Q.; Zhao, Z.; Lü, Y. Orthogonally Polarized Dual-Wavelength Pr:LLF Green Laser at 546 nm and 550 nm with the Balanced Output Powers at All Pump Power Level. Photonics 2025, 12, 393. https://doi.org/10.3390/photonics12040393
Huang H, Xia J, Anh N, Li Y, Zhang Y, Zhang Q, Zhao Z, Lü Y. Orthogonally Polarized Dual-Wavelength Pr:LLF Green Laser at 546 nm and 550 nm with the Balanced Output Powers at All Pump Power Level. Photonics. 2025; 12(4):393. https://doi.org/10.3390/photonics12040393
Chicago/Turabian StyleHuang, Haotian, Jing Xia, Nguyentuan Anh, Yuzhao Li, Yuanxian Zhang, Qian Zhang, Zhexian Zhao, and Yanfei Lü. 2025. "Orthogonally Polarized Dual-Wavelength Pr:LLF Green Laser at 546 nm and 550 nm with the Balanced Output Powers at All Pump Power Level" Photonics 12, no. 4: 393. https://doi.org/10.3390/photonics12040393
APA StyleHuang, H., Xia, J., Anh, N., Li, Y., Zhang, Y., Zhang, Q., Zhao, Z., & Lü, Y. (2025). Orthogonally Polarized Dual-Wavelength Pr:LLF Green Laser at 546 nm and 550 nm with the Balanced Output Powers at All Pump Power Level. Photonics, 12(4), 393. https://doi.org/10.3390/photonics12040393