55% Efficient High-Power Multijunction Photovoltaic Laser Power Converters for 1070 nm
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shcherbakov, E.A.; Fomin, V.V.; Abramov, A.A.; Ferin, A.A.; Mochalov, D.V.; Gapontsev, V.P. Industrial grade 100 kW power CW fiber laser. In Advanced Solid State Lasers; Optica Publishing Group: Washington, DC, USA, 2013; p. ATh4A–2. [Google Scholar]
- Varshney, A.K.; Singhal, G.; Nayak, J. High power lasers for directed energy applications: Developments and challenges. Infrared Phys. Technol. 2024, 136, 105064. [Google Scholar] [CrossRef]
- Platonov, N.; Yagodkin, R.; De La Cruz, J.; Arambula, C.; Fitts, J.; Sergeev, V. 5 kW single-mode narrow-linewidth ytterbium fiber amplifier with M2-value< 1.1 in all fiber format and direct diode pumping. In Fiber Lasers XXII: Technology and Systems; SPIE: Bellingham, WA, USA, 2025; Volume 13342. [Google Scholar]
- Kawahito, Y.; Wang, H.; Katayama, S.; Sumimori, D. Ultra high power (100 kW) fiber laser welding of steel. Opt. Lett. 2018, 43, 4667–4670. [Google Scholar] [CrossRef] [PubMed]
- Fathi, H.; Närhi, M.; Gumenyuk, R. Towards ultimate high-power scaling: Coherent beam combining of fiber lasers. Photonics 2021, 8, 566. [Google Scholar] [CrossRef]
- Olsen, L.C.; Huber, D.A.; Dunham, G.; Addis, F.W. High efficiency monochromatic GaAs solar cells. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 7–11 October 1991; Volume 1, pp. 419–424. [Google Scholar]
- Fahrenbruch, A.L.; Lopez-Otero, A.; Werthen, J.G.; Wu, T.C. GaAs- and InAlGaAs-based concentrator-type cells for conversion of power transmitted by optical fibers. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Washington, DC, USA, 13–17 May 1996; pp. 117–120. [Google Scholar]
- Fave, A.; Kaminski, A.; Gavand, M.; Mayet, L.; Laugier, A. GaAs converter for high power laser diode. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Washington, DC, USA, 13–17 May 1996; pp. 101–104. [Google Scholar]
- Peña, R.; Algora, C.; Anton, I. GaAs multiple photovoltaic converters with an efficiency of 45% for monochromatic illumination. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; pp. 228–231. [Google Scholar]
- Krut, U.D.; Sudharsanan, R.; Isshiki, T.; King, R.; Karam, N.H. A 53% high efficiency GaAs vertically integrated multi-junction laser power converter. In Proceedings of the 65th DRC Device Research Conference, South Bend, IN, USA, 18–20 June 2007; pp. 123–124, art. no. 4373680.. [Google Scholar]
- Oliva, E.; Dimroth, F.; Bett, A.W. GaAs converters for high power densities of laser illumination. Prog. Photovolt. Res. Appl. 2008, 16, 289–295. [Google Scholar] [CrossRef]
- Bett, A.W.; Dimroth, F.; Lockenhoff, R.; Oliva, E.; Schubert, J. III-V solar cells under monochromatic illumination. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008. art. no. 4922910. [Google Scholar]
- Schubert, J.; Oliva, E.; Dimroth, F.; Guter, W.; Loeckenhoff, R.; Bett, A.W. High-voltage GaAs photovoltaic laser power converters. IEEE Trans. Electron Devices 2009, 56, 170–175. [Google Scholar] [CrossRef]
- Masson, D.; Proulx, F.; Fafard, S. Pushing the limits of concentrated photovoltaic solar cell tunnel junctions in novel high-efficiency GaAs phototransducers based on a vertical epitaxial heterostructure architecture. Prog. Photovolt. Res. Appl. 2015, 23, 1687–1696. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. Transducer to Convert Optical Energy to Electrical Energy. U.S. Patent 9,673,343, 6 June 2017. [Google Scholar]
- Zhao, Y.; Sun, Y.; He, Y.; Yu, S.; Dong, J. Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter. Sci. Rep. 2016, 6, 38044. [Google Scholar] [CrossRef] [PubMed]
- Fafard, S.; York, M.C.A.; Proulx, F.; Valdivia, C.E.; Wilkins, M.M.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D.P. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl. Phys. Lett. 2016, 108, 071101. [Google Scholar] [CrossRef]
- Fafard, S.; Proulx, F.; York, M.C.A.; Richard, L.S.; Provost, P.O.; Arès, R.; Aimez, V.; Masson, D.P. High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60%. Appl. Phys. Lett. 2016, 109, 131107. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Kalyuzhnyy, N.A.; Mintairov, S.A.; Sorokina, S.V.; Potapovich, N.S.; Emelyanov, V.M.; Timoshina, N.K.; Andreev, V.M. Photovoltaic laser-power converter based on AlGaAs/GaAs heterostructures. Semiconductors 2016, 50, 1220–1224. [Google Scholar] [CrossRef]
- Sun, Y.-R.; Dong, J.-R.; He, Y.; Zhao, Y.-M.; Yu, S.-Z.; Xue, J.-P.; Xue, C.; Wang, J.; Lu, Y.-Q.; Ding, Y.-W. A six-junction GaAs laser power converter with different sizes of active aperture. Optoelectron. Lett. 2017, 13, 21–24. [Google Scholar] [CrossRef]
- York, M.C.A.; Fafard, S. High efficiency phototransducers based on a novel vertical epitaxial heterostructure architecture (VEHSA) with thin p/n junctions. J. Phys. D Appl. Phys. 2017, 50, 173003. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Y.; Zhao, Y.; Yu, S.; Dong, J.; Xue, J.; Xue, C.; Wang, J.; Lu, Y.; Ding, Y. Four-junction AlGaAs/GaAs laser power converter. J. Semicond. 2018, 39, 044003. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Sorokina, S.V.; Potapovich, N.S.; Khvostikova, O.A.; Timoshina, N.K.; Shvarts, M.Z. Modification of Photovoltaic Laser-Power (λ = 808 nm) Converters Grown by LPE. Semiconductors 2018, 52, 366–370. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Y.; Zhao, Y.; Yu, S.; Li, K.; Dong, J.; Xue, J.; Xue, C.; Ye, Y. Characterizations of high-voltage vertically-stacked GaAs laser power converter. J. Semicond. 2018, 39, 094006. [Google Scholar] [CrossRef]
- Panchak, A.N.; Pokrovskiy, P.V.; Malevskiy, D.A.; Larionov, V.R.; Shvarts, M.Z. High-Efficiency Conversion of High-Power-Density Laser Radiation. Tech. Phys. Lett. 2019, 45, 24–26. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, P.; Ren, H.; Han, P. Enhanced efficiency in 808 nm GaAs laser power converters via gradient doping. AIP Adv. 2019, 9, 105206. [Google Scholar] [CrossRef]
- Helmers, H.; Lopez, E.; Höhn, O.; Lackner, D.; Schön, J.; Schauerte, M.; Schachtner, M.; Dimroth, F.; Bett, A.W. 68.9% Efficient GaAs-Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance. Phys. Status Solidi (RRL) Rapid Res. Lett. 2021, 15, 2100113. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. 74.7% Efficient GaAs-Based Laser Power Converters at 808 nm at 150 K. Photonics 2022, 9, 579. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D. Vertical Multi-Junction Laser Power Converters with 61% Efficiency at 30 W Output Power and with Tolerance to Beam Non-Uniformity, Partial Illumination, and Beam Displacement. Photonics 2023, 10, 940. [Google Scholar] [CrossRef]
- García, I.; Hinojosa, M.; Delgado, M.; Algora, C. Photovoltaic laser power converters producing 21 W/cm2 at a conversion efficiency of 66.5%. Cell Rep. Phys. Sci. 2024, 5, 102263. [Google Scholar] [CrossRef]
- Helmers, H.; Oliva, E.; Schachtner, M.; Mikolasch, G.; Ruiz-Preciado, L.A.; Franke, A.; Bartsch, J. Overcoming optical-electrical grid design trade-offs for cm2-sized high-power GaAs photonic power converters by plating technology. Prog. Photovolt. Res. Appl. 2024, 32, 636–642. [Google Scholar] [CrossRef]
- Gou, Y.; Mou, Z.; Wang, H.; Chen, Y.; Wang, J.; Yang, H.; Deng, G. High-performance laser power converters with resistance to thermal annealing. Opt. Express 2024, 32, 8335–8342. [Google Scholar] [CrossRef] [PubMed]
- Proulx, F.; York, M.C.A.; Provost, P.O.; Arès, R.; Aimez, V.; Masson, D.P.; Fafard, S. Measurement of strong photon recycling in ultra-thin GaAs n/p junctions monolithically integrated in high-photovoltage vertical epitaxial heterostructure architec-tures with conversion efficiencies exceeding 60%. Phys. Status Solidi RRL 2017, 11, 1600385. [Google Scholar] [CrossRef]
- Wilkins, M.; Valdivia, C.E.; Gabr, A.M.; Masson, D.; Fafard, S.; Hinzer, K. Luminescent coupling in planar opto-electronic de-vices. J. Appl. Phys. 2015, 118, 143102. [Google Scholar] [CrossRef]
- Lopez, E.; Höhn, O.; Schauerte, M.; Lackner, D.; Schachtner, M.; Reichmuth, S.K.; Helmers, H. Experimental coupling process efficiency and benefits of back surface reflectors in photovoltaic multi-junction photonic power converters. Prog. Photovolt. Res. Appl. 2021, 29, 461–470. [Google Scholar] [CrossRef]
- Xia, D.; Krich, J.J. Efficiency increase in multijunction monochromatic photovoltaic devices due to luminescent coupling. J. Appl. Phys. 2020, 128, 013101. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D.P. Perspective on photovoltaic optical power converters. J. Appl. Phys. 2021, 130, 160901. [Google Scholar] [CrossRef]
- Keller, G. GaAs multi-junction laser power converters at AZUR SPACE: Current status and development activities. In Proceedings of the 1st Optical Wireless and Fiber Power Transmission Conference, Yokohama, Japan, 23–25 April 2019; pp. 11–12. [Google Scholar]
- Jarvis, S.D.; Mukherjee, J.; Perren, M.; Sweeney, S.J. Development and characterisation of laser power converters for optical power transfer applications. IET Optoelectron. 2014, 8, 64–70. [Google Scholar] [CrossRef]
- Wang, A.C.; Sun, Y.R.; Yu, S.Z.; Yin, J.J.; Zhang, W.; Wang, J.S.; Fu, Q.X.; Han, Y.H.; Qin, J.; Dong, J.R. Characteristics of 1520 nm InGaAs multijunction laser power converters. Appl. Phys. Lett. 2021, 119, 243902. [Google Scholar] [CrossRef]
- Sweeney, S.J. Optical wireless power at eye-safe wavelengths: Challenges and opportunities. In Proceedings of the 3rd Optical Wireless and Fiber Power Transmission Conference (OWPT2021), Yokohama, Japan, 19–22 April 2021. [Google Scholar]
- Fafard, S.; Masson, D.P. High-Efficiency and High-Power Multijunction InGaAs/InP Photovoltaic Laser Power Converters for 1470 nm. Photonics 2022, 9, 438. [Google Scholar] [CrossRef]
- Helmers, H.; Hohn, O.; Tibbits, T.; Schauerte, M.; Amin, H.M.N.; Lackner, D. Unlocking 1550 nm laser power conversion by InGaAs single- and multiple-junction PV cells. In Proceedings of the 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, PA, USA, 5–10 June 2022. [Google Scholar]
- Prajzler, V.; Zikmund, M. Power over fiber system using high-power laser source operating at 1470 nm with maximum power 2.0 W for powering to distance up to 5855 m. Opt. Fiber Technol. 2024, 88, 104033. [Google Scholar] [CrossRef]
- Law, H.D.; Ng, W.W.; Nakano, K.; Dapkus, P.D.; Stone, D.R. High Efficiency InGaAsP Photovoltaic Power Converter. IEEE Electron Device Lett. 1981, 2, 26–27. [Google Scholar] [CrossRef]
- Green, M.A.; Zhao, J.; Wang, A.; Wenham, S.R. 45% Efficient Silicon Photovoltaic Cell Under Monochromatic Light. IEEE Electron Device Lett. 1992, 13, 317–318. [Google Scholar] [CrossRef]
- Wojtczuk, S.J. Long-wavelength laser power converters for optical fibers. In Proceedings of the Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference, Anaheim, CA, USA, 29 September–3 October 1997; pp. 971–974. [Google Scholar]
- Andreev, V.; Khvostikov, V.; Kalinovsky, V.; Lantratov, V.; Grilikhes, V.; Rumyantsev, V.; Shvarts, M.; Fokanov, V.; Pavlov, A. High current density GaAs and GaSb photovoltaic cells for laser power beaming. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversation, Osaka, Japan, 11–18 May 2003; Volume 1, pp. 761–764. [Google Scholar]
- Jomen, R.; Tanaka, F.; Akiba, T.; Ikeda, M.; Kiryu, K.; Matsushita, M.; Maenaka, H.; Dai, P.; Lu, S.; Uchida, S. Conversion efficiencies of single-junction III–V solar cells based on InGaP, GaAs, InGaAsP, and InGaAs for laser wireless power transmission. Jpn. J. Appl. Phys. 2018, 57, 08RD12. [Google Scholar] [CrossRef]
- Kalyuzhnyy, N.A.; Emelyanov, V.M.; Mintairov, S.A.; Shvarts, M.Z. InGaAs metamorphic laser (λ=1064 nm) power converters with over 44% efficiency. AIP Conf. Proc. 2018, 2012, 110002. [Google Scholar]
- Kim, Y.; Shin, H.-B.; Lee, W.-H.; Jung, S.H.; Kim, C.Z.; Kim, H.; Lee, Y.T.; Kang, H.K. 1080 nm InGaAs laser power converters grown by MOCVD using InAlGaAs metamorphic buffer layers. Sol. Energy Mater. Sol. Cells 2019, 200, 109984. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Kalyuzhnyy, N.A.; Mintairov, S.A.; Potapovich, N.S.; Sorokina, S.V.; Shvarts, M.Z. Module of Laser-Radiation (λ = 1064 nm) Photovoltaic Converters. Semiconductors 2019, 53, 1110–1113. [Google Scholar] [CrossRef]
- Yin, J.; Sun, Y.; Yu, S.; Zhao, Y.; Li, R.; Dong, J. 1064 nm InGaAsP multi-junction laser power converters. J. Semicond. 2020, 41, 062303. [Google Scholar] [CrossRef]
- Helmers, H.; Franke, A.; Lackner, D.; Hohn, O.; Predan, F.; Dimroth, F. 51% Efficient Photonic Power Converters for O-Band Wavelengths around 1310 nm. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Calgary, AB, Canada, 15–21 June 2020; pp. 2471–2474. [Google Scholar]
- Kalyuzhnyy, N.A.; Emelyanov, V.M.; Evstropov, V.V.; Mintairov, S.A.; Mintairov, M.A.; Nahimovich, M.V.; Salii, R.A.; Shvarts, M.Z. Optimization of photoelectric parameters of InGaAs metamorphic laser (λ=1064 nm) power converters with over 50% efficiency. Sol. Energy Mater. Sol. Cells 2020, 217, 110710. [Google Scholar] [CrossRef]
- Komuro, Y.; Honda, S.; Kurooka, K.; Warigaya, R.; Tanaka, F.; Uchida, S. A 43.0% efficient GaInP photonic power converter with a distributed Bragg reflector under high-power 638 nm laser irradiation of 17 Wcm−2. Appl. Phys. Express 2021, 14, 052002. [Google Scholar] [CrossRef]
- Nouri, N.; Valdivia, C.E.; Beattie, M.N.; Zamiri, M.S.; Krich, J.J.; Hinzer, K. Ultrathin monochromatic photonic power converters with nanostructured back mirror for light trapping of 1310-nm laser illumination. In Physics, Simulation, and Photonic Engineering of Photovoltaic Devices X; SPIE: Bellingham, WA, USA, 2021; Volume 11681, p. 116810X. [Google Scholar]
- Lozano, J.F.; Seoane, N.; Almonacid, F.; Fernández, E.F.; García-Loureiro, A. Laser Power Converter Architectures Based on 3C-SiC with Efficiencies > 80%. Sol. RRL 2022, 6, 2101077. [Google Scholar] [CrossRef]
- Wong, Y.L.; Shibui, S.; Koga, M.; Hayashi, S.; Uchida, S. Optical Wireless Power Transmission Using a GaInP Power Converter Cell under High-Power 635 nm Laser Irradiation of 53.5 W/cm2. Energies 2022, 15, 3690. [Google Scholar] [CrossRef]
- Gou, Y.; Wang, H.; Wang, J.; Zhang, Y.; Niu, R.; Chen, X.; Wang, B.; Xiao, Y.; Zhang, Z.; Liu, W.; et al. 1064 nm InGaAs metamorphic laser power converts with over 44% efficiency. Opt. Express 2022, 30, 42178–42185. [Google Scholar] [CrossRef] [PubMed]
- Sanmartín, P.; Fernández, F.E.; García-Loureiro, A.; Montes-Romero, J.; Cano, A.; Martín, P.; Rey-Stolle, I.; García, I.; Almonacid, F. Design and Characterization of a 53.5% Efficient Gallium Indium Phosphide-Based Optical Photovoltaic Converter under 637 nm Laser Irradiation at 10 W cm−2. Solar RRL 2024, 8, 2400278. [Google Scholar] [CrossRef]
- Pan, H.; Wang, J.; Chen, X.; Chen, Y.; Mou, Z.; Yang, H.; Deng, G.; Gou, Y. InGaAs/GaAs metamorphic buffer for laser power converter applications. Opt. Express 2024, 32, 48105–48113. [Google Scholar] [CrossRef]
- Hwang, S.; Shim, J.; Eo, Y. Ohmic Contacts of Pd/Zn/M(= Pd or Pt)/Au to p-Type InP. J. Korean Phys. Soc. 2005, 46, 751. [Google Scholar]
- Höhn, O.; Walker, A.W.; Bett, A.W.; Helmers, H. Optimal laser wavelength for efficient laser power converter operation over temperature. Appl. Phys. Lett. 2016, 108, 241104. [Google Scholar] [CrossRef]
- Čičić, S.; Tomić, S. Automated design of multi junction solar cells by genetic approach: Reaching the> 50% efficiency target. Sol. Energy Mater. Sol. Cells 2018, 181, 30–37. [Google Scholar] [CrossRef]
- France, R.M.; Buencuerpo, J.; Bradsby, M.; Geisz, J.F.; Sun, Y.; Dhingra, P.; Lee, M.L.; Steiner, M.A. Graded buffer Bragg reflectors with high reflectivity and transparency for metamorphic optoelectronics. J. Appl. Phys. 2021, 129, 173102. [Google Scholar] [CrossRef]
- Beattie, M.N.; Valdivia, C.E.; Wilkins, M.M.; Zamiri, M.; Kaller, K.L.C.; Tam, M.C.; Kim, H.S.; Krich, J.J.; Wasilewski, Z.R.; Hinzer, K. High current density tunnel diodes for multi-junction photovoltaic devices on InP substrates. Appl. Phys. Lett. 2021, 118, 062101. [Google Scholar] [CrossRef]
- Lin, M.; Sha, W.E.I.; Zhong, W.; Xu, D. Intrinsic losses in photovoltaic laser power converters. Appl. Phys. Lett. 2021, 118, 104103. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, S.; Ren, H.; Li, S.; Han, P. Energy band adjustment of 808 nm GaAs laser power converters via gradient doping. J. Semicond. 2021, 42, 032701. [Google Scholar] [CrossRef]
- Wulf, J.; Oliva, E.; Mikolasch, G.; Bartsch, J.; Dimroth, F.; Helmers, H. Thin film GaAs solar cell enabled by direct rear side plating and patterned epitaxial lift-off. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; p. 1931. [Google Scholar]
- Schauerte, M.; Höhn, O.; Wierzkowski, T.; Keller, G.; Helmers, H. 4-Junction GaAs Based Thin Film Photonic Power Converter with Back Surface Reflector for Medical Applications. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 1954–1959. [Google Scholar]
- France, R.M.; Hinojosa, M.; Ahrenkiel, S.P.; Young, M.R.; Johnston, S.W.; Guthrey, H.L.; Geisz, J.F. Improvement of front-junction GaInP by point-defect injection and annealing. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; p. 2522. [Google Scholar]
- Geisz, J.F.; Buencuerpo, J.; McMahon, W.E.; Klein, T.R.; Tamboli, A.C.; Warren, E.L. Fabrication, Measurement, and Modeling of GaInP/GaAs Three-Terminal Cells and Strings. In Proceedings of the 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 0154–0157. [Google Scholar]
- Yamaguchi, M.; Dimroth, F.; Geisz, J.F.; Ekins-Daukes, N.J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 2021, 129, 240901. [Google Scholar] [CrossRef]
- Wang, A.-C.; Yin, J.-J.; Yu, S.-Z.; Sun, Y.-R. Multiple tunnel diode peaks in I–V curves of a multijunction laser power converter. Appl. Phys. Lett. 2022, 121, 233901. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D. Onset of Quantum-Confined Stark Effects in Multijunction Photovoltaic Laser Power Converters Designed with Thin Subcells. Photonics 2023, 10, 1243. [Google Scholar] [CrossRef]
- Khvostikov, V.P.; Sorokina, S.V.; Khvostikova, O.A.; Nakhimovich, M.V.; Shvarts, Z. Ge-Based Photovoltaic Laser-Power Converters. IEEE J. Photovoltaics 2023, 13, 254–259. [Google Scholar] [CrossRef]
- Wang, A.-C.; Yin, J.-J.; Yu, S.-Z.; Sun, Y.-R.; Dong, J.-R. Origins of the short circuit current of a current mismatched multijunction photovoltaic cell considering subcell reverse breakdown. Opt. Express 2023, 31, 14482–14494. [Google Scholar] [CrossRef]
- Gou, Y.; Zhu, L.; Mou, Z.; Chen, Y.; Cheng, Y.; Wang, J.; Yang, H.; Deng, G. InP-based tunnel junctions for ultra-high concentration photovoltaics. Opt. Express 2023, 32, 408–414. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, C.; Chu, W.; Zhou, Y.; Zhou, R.; Yao, Y. Optimal I–V Curve Scan Time for a GaAs Laser Power Converter. Photonics 2023, 10, 762. [Google Scholar] [CrossRef]
- Shi, L.; Sun, C.; Liu, Y.; Wu, Y.; Wu, Z.; Guo, H.; Wan, R.; Zhang, B.; Zhang, Y. Effect of cell structures on electrical degradation of GaAs laser power convertors after 1 MeV electron irradiation and structure-optimization for improving radiation resistance. Sol. Energy Mater. Sol. Cells 2024, 278, 113206. [Google Scholar] [CrossRef]
- Shi, L.; Sun, C.; Liu, Y.; Liu, K.; Zhang, W.; Wu, Y.; Guo, H.; Sun, Q. A novel method of determining bias lights for spectral response measurement of GaAs multi-junction laser power converters and its applications. Sol. Energy Mater. Sol. Cells 2023, 266, 112661. [Google Scholar] [CrossRef]
- Schachtner, M.; Beattie, M.N.; Reichmuth, S.K.; Wekkeli, A.; Siefer, G.; Helmers, H. Measuring the device-level EQE of multi-junction photonic power converters. Prog. Photovolt. Res. Appl. 2024, 32, 827–836. [Google Scholar] [CrossRef]
- Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S.J. Efficiency limits of laser power converters for optical power transfer applications. J. Phys. D Appl. Phys. 2013, 46, 264006. [Google Scholar] [CrossRef]
- Shan, T.; Qi, X. Design and optimization of GaAs photovoltaic converter for laser power beaming. Infrared Phys. Technol. 2015, 71, 144–150. [Google Scholar] [CrossRef]
- Jaffe, P. Practical power beaming gets real. In IEEE Spectrum 21 May 2022; Jaffe, P., Jenkins, P., Nugent, T., Eds.; PowerLight Tech. Inc.: Kent, WA, USA, 2019; Available online: https://youtu.be/Xb9THqrXd4I (accessed on 6 April 2025).
- Algora, C.; García, I.; Delgado, M.; Peña, R.; Vázquez, C.; Hinojosa, M.; Rey-Stolle, I. Beaming power: Photovoltaic laser power converters for power-by-light. Joule 2022, 6, 340. [Google Scholar] [CrossRef]
- Gou, Y.; Wang, H.; Wang, J.; Niu, R.; Chen, X.; Wang, B.; Xiao, Y.; Zhang, Z.; Liu, W.; Yang, H.; et al. High-performance laser power converts for direct-energy applications. Opt. Express 2022, 30, 31509–31517. [Google Scholar] [CrossRef] [PubMed]
- Gou, Y.; Wang, H.; Wang, J.; Chen, Y.; Mou, Z.; Chen, Y.; Yang, H.; Deng, G. High-performance laser power converters for wireless information transmission applications. Opt. Express 2023, 31, 34937–34945. [Google Scholar] [CrossRef]
- Chen, Y.; Mou, Z.; Wang, J.; Zhu, L.; Gou, Y.; Sun, Z. 808 nm laser power converters for simultaneous wireless information and power transfer. IEEE J. Photovolt. 2024, 14, 890–900. [Google Scholar] [CrossRef]
- Jaffe, P.; Nugent, T.; Ii, B.S.; Szazynski, M. Power Beaming: History, Theory, and Practice; World Scientific: Singapore, 2024; Volume 5. [Google Scholar]
- Fujita, K. Laser Power Transmission on the Moon Using Multibeams of Single-Mode Fiber Lasers as Wireless System and Optical Fibers as Wired System. J. Evol. Space Act. 2024, 2, 174. [Google Scholar]
- Zheng, Y.; Zhang, G.; Huan, Z.; Zhang, Y.; Yuan, G.; Li, Q.; Ding, G.; Lv, Z.; Ni, W.; Shao, Y.; et al. Wireless laser power transmission: Recent progress and future challenges. Space Sol. Power Wirel. Transm. 2024, 1, 17–26. [Google Scholar] [CrossRef]
- Meng, X.-L.; Li, X.-Y.; Kong, D.-H.; Mallick, T.K.; Liu, C.-L. Enhanced heat transfer characteristics using dimples in the receiving end of laser wireless power transmission system. Appl. Therm. Eng. 2024, 252, 123619. [Google Scholar] [CrossRef]
- Thakar, B.; McNabb, J.T.; Robertson, B.E.; Mavris, D. Trade Studies for Evaluating Lunar Surface Power Architectures. In Proceedings of the AIAA SCITECH 2025 Forum, Orlando, FL, USA, 6–10 January 2025; p. 2192. [Google Scholar]
- Nugent, T., Jr.; Summers, J.; Gort, J.; Weinthal, W. Low-latency enhanced light curtain for safe laser power beaming. Opt. Power Deliv. 2025, 13359, 6–10. [Google Scholar]
- Kimovec, R.; Helmers, H.; Bett, A.W.; Topič, M. Comprehensive electrical loss analysis of monolithic interconnected multi-segment laser power converters. Prog. Photovolt. Res. Appl. 2019, 27, 199. [Google Scholar] [CrossRef]
- Wagner, L.; Reichmuth, S.K.; Philipps, S.P.; Oliva, E.; Bett, A.W.; Helmers, H. Integrated series/parallel connection for photo-voltaic laser power converters with optimized current matching. Prog. Photovolt. Res. Appl. 2020, 29, 172. [Google Scholar] [CrossRef]
- Panchak, A.; Khvostikov, V.; Pokrovskiy, P. AlGaAs gradient waveguides for vertical p/n junction GaAs laser power con-verters. Opt. Laser Technol. 2021, 136, 106735. [Google Scholar] [CrossRef]
- Fernández, E.F.; García-Loureiro, A.; Seoane, N.; Almonacid, F. Band-gap material selection for remote high-power laser transmission. Sol. Energy Mat. Sol. Cells 2022, 235, 111483. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D. 67.5% Efficient InP-Based Laser Power Converters at 1470 nm at 77 K. Photonics 2024, 11, 130. [Google Scholar] [CrossRef]
- Kim, B.; Kim, M.; Li, B.D.; Hool, R.D.; Lee, M.L. Cryogenic GaAs laser power converters. Sol. Energy Mater. Sol. Cells 2025, 281, 113321. [Google Scholar] [CrossRef]
- He, T.; Yang, S.-H.; Muñoz, M.Á.; Zhang, H.-Y.; Zhao, C.-M.; Zhang, Y.-C.; Xu, P. High-power high-efficiency laser power transmission at 100 m using optimized multi-cell GaAs converter. Chin. Phys. Lett. 2014, 31, 104203. [Google Scholar] [CrossRef]
- Wilkins, M.M.; Ishigaki, M.; Provost, P.-O.; Masson, D.; Fafard, S.; Valdivia, C.E.; DeDe, E.M.; Hinzer, K. Ripple-free boost-mode power supply using photonic power conversion. IEEE Trans. Power Electron. 2018, 34, 1054–1064. [Google Scholar] [CrossRef]
- Li, L.; Ji, H.-M.; Luo, S.; Xu, P.; Gao, Q.; Lv, H.; Liu, W. Fabrication and Characterization of a High-Power Assembly With a 20-Junction Monolithically Stacked Laser Power Converter. IEEE J. Photovoltaics 2018, 8, 1355–1362. [Google Scholar]
- Matsuura, M.; Nomoto, H.; Mamiya, H.; Higuchi, T.; Masson, D.; Fafard, S. Over 40-W Electric Power and Optical Data Transmission Using an Optical Fiber. IEEE Trans. Power Electron. 2020, 36, 4532–4539. [Google Scholar] [CrossRef]
- Helmers, H.; Armbruster, C.; von Ravenstein, M.; Derix, D.; Schoner, C. 6-W Optical Power Link with Integrated Optical Data Transmission. IEEE Trans. Power Electron. 2020, 35, 7904–7909. [Google Scholar] [CrossRef]
- Shindo, N.; Kobatake, T.; Masson, D.; Fafard, S.; Matsuura, M. Optically Powered and Controlled Drones Using Optical Fibers for Airborne Base Stations. Photonics 2022, 9, 882. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, C.; Lv, H.; Zhang, Y.; Zhou, R.; Chu, W.; Lv, P.; Qin, H.; Li, S.; Li, X. Design and research of laser power converter (LPC) for passive optical fiber audio transmission system terminal. Photonics 2023, 10, 1257. [Google Scholar] [CrossRef]
- Putra, E.P.; Theivindran, R.; Hasnul, H.; Lee, H.J.; Ker, P.J.; Jamaludin, Z.; Awang, R.; Yusof, F.A.M. Technology update on patent and development trend of power over fiber: A critical review and future prospects. J. Photon-Energy 2023, 13, 011001. [Google Scholar] [CrossRef]
- Fafard, S.; Masson, D. Demonstration of Power-over-Fiber with Watts of Output Power Capabilities over Kilometers or at Cryogenic Temperatures. Photonics 2024, 11, 596. [Google Scholar] [CrossRef]
- Souza, D.; Carneiro, L.; Souto, V.D.P.; Sodré, A.C. Radio-and Power-over-Fiber Integration for 6G Networks: Challenges and Future Prospects. IEEE Access 2024, 13, 5321–5341. [Google Scholar] [CrossRef]
- He, T.; Pan, G.; Zheng, G.; Xu, Z.; Lv, Z.; Wu, Q.; Wan, L.; Huang, H.; Shi, T. Experimentation and analysis of intra-cavity beam-splitting method to enhance the uniformity of light in the powersphere. Photonics 2024, 11, 128. [Google Scholar] [CrossRef]
- Vázquez, C.; Altuna, R.; López-Cardona, J.D.; Pérez, R. Power over fiber in radio access networks: 5G and beyond. J. Opt. Commun. Netw. 2024, 16, D119–D128. [Google Scholar] [CrossRef]
- Arroyave, M.; Behera, B.; Cavanna, F.; Feld, A.; Guo, F.; Heindel, A.; Jung, C.; Koch, K.; Silverio, D.L.; Caicedo, D.M.; et al. Characterization and novel application of power over fiber for electronics in a harsh environment. J. Instrum. 2024, 19, P10019. [Google Scholar] [CrossRef]
- Pellico, W.; Arroyave, M.A.; Behera, B.; Cavanna, F.; Guo, F.; Heindel, A.; Jung, C.K.; Silverio, D.L.; Caicedo, D.M.; McGrew, C.; et al. Power over fiber development for HEP detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1069, 169880. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fafard, S.; Masson, D. 55% Efficient High-Power Multijunction Photovoltaic Laser Power Converters for 1070 nm. Photonics 2025, 12, 406. https://doi.org/10.3390/photonics12050406
Fafard S, Masson D. 55% Efficient High-Power Multijunction Photovoltaic Laser Power Converters for 1070 nm. Photonics. 2025; 12(5):406. https://doi.org/10.3390/photonics12050406
Chicago/Turabian StyleFafard, Simon, and Denis Masson. 2025. "55% Efficient High-Power Multijunction Photovoltaic Laser Power Converters for 1070 nm" Photonics 12, no. 5: 406. https://doi.org/10.3390/photonics12050406
APA StyleFafard, S., & Masson, D. (2025). 55% Efficient High-Power Multijunction Photovoltaic Laser Power Converters for 1070 nm. Photonics, 12(5), 406. https://doi.org/10.3390/photonics12050406