Simulation-Driven End-to-End Deep Learning Method for White-Light Interference Topography Reconstruction
Abstract
1. Introduction
2. Methods
2.1. General Framework
2.2. White-Light Interferometry
2.3. Simulation Architecture
2.4. Generation of Training Datasets
2.5. DNN Training Based on Simulation Data
2.6. Network Architecture
3. Results and Discussion
3.1. Performance of DNN Reconstruction on Simulated Data
3.2. Performance of DNN Reconstruction on Experimental Data
3.3. Noise Resistance Performance
3.4. Computational Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, L.; Jia, J.; Pei, X.; Sun, F.-M.; Zhou, H.; Li, J.-Q. A robust surface recover algorithm based on random phase noise correction for white light interferometry. Opt. Lasers Eng. 2020, 128, 106016. [Google Scholar] [CrossRef]
- Feng, X.; Senin, N.; Su, R.; Ramasamy, S.; Leach, R. Optical measurement of surface topographies with transparent coatings. Opt. Lasers Eng. 2019, 121, 261–270. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Yang, H.; Yin, Z. Accurate Measurements of Droplet Volume With Coherence Scanning Interferometry. IEEE Trans. Instrum. Meas. 2023, 72, 1–15. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Z.; Zhu, L.; Zhang, X. Topography measurement and reconstruction of inner surfaces based on white light interference. Measurement 2021, 186, 110199. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, L.; Fang, F.; Zhang, X. Research on the quality control technology of micro-topography machining based on in situ white light interferometry. Measurement 2023, 220, 113257. [Google Scholar] [CrossRef]
- Lu, Y.; Park, J.; Yu, L.; Kim, S.-W. 3D profiling of rough silicon carbide surfaces by coherence scanning interferometry using a femtosecond laser. Appl. Opt. 2018, 57, 2584–2589. [Google Scholar] [CrossRef]
- Zou, Y.; Li, Y.; Kaestner, M.; Reithmeier, E. Low-coherence interferometry based roughness measurement on turbine blade surfaces using wavelet analysis. Opt. Lasers Eng. 2016, 82, 113–121. [Google Scholar] [CrossRef]
- Liu, M.; Fai Cheung, C.; Senin, N.; Wang, S.; Su, R.; Leach, R. On-machine surface defect detection using light scattering and deep learning. J. Opt. Soc. Am. A 2020, 37, B53–B59. [Google Scholar] [CrossRef]
- Wu, D.; Fang, F. Development of surface reconstruction algorithms for optical interferometric measurement. Front. Mech. Eng. 2021, 16, 1–31. [Google Scholar] [CrossRef]
- Su, R.; Coupland, J.; Sheppard, C.; Leach, R. Scattering and three-dimensional imaging in surface topography measuring interference microscopy. J. Opt. Soc. Am. A 2021, 38, A27–A42. [Google Scholar] [CrossRef]
- Sun, Y.; Gao, Z.; Ma, J.; Zhou, J.; Xie, P.; Wang, L.; Lei, L.; Fu, Y.; Guo, Z.; Yuan, Q. Surface topography measurement of microstructures near the lateral resolution limit via coherence scanning interferometry. Opt. Lasers Eng. 2022, 152, 106949. [Google Scholar] [CrossRef]
- Cui, K.; Liu, Q.; Huang, X.; Zhang, H.; Li, L. Scanning error detection and compensation algorithm for white-light interferometry. Opt. Lasers Eng. 2022, 148, 106768. [Google Scholar] [CrossRef]
- Teale, C.; Barbastathis, G.; Schmidt, M.A. Vibration Compensated, Scanning White Light Interferometer for In Situ Depth Measurements in a Deep Reactive Ion Etcher. J. Microelectromechanical Syst. 2019, 28, 441–446. [Google Scholar] [CrossRef]
- Peter de, G.; Jack, D. Definition and evaluation of topography measurement noise in optical instruments. Opt. Eng. 2020, 59, 064110. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rivenson, Y.; Göröcs, Z.; Günaydin, H.; Zhang, Y.; Wang, H.; Ozcan, A. Deep learning microscopy. Optica 2017, 4, 1437–1443. [Google Scholar] [CrossRef]
- Rivenson, Y.; Zhang, Y.; Günaydın, H.; Teng, D.; Ozcan, A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 2018, 7, 17141. [Google Scholar] [CrossRef]
- Shijie, F.; Qian, C.; Guohua, G.; Tianyang, T.; Liang, Z.; Yan, H.; Wei, Y.; Chao, Z. Fringe pattern analysis using deep learning. Adv. Photonics 2019, 1, 025001. [Google Scholar] [CrossRef]
- Lin, B.; Fu, S.; Zhang, C.; Wang, F.; Li, Y. Optical fringe patterns filtering based on multi-stage convolution neural network. Opt. Lasers Eng. 2020, 126, 105853. [Google Scholar] [CrossRef]
- Xu, W.; Xu, W.; Bouet, N.; Zhou, J.; Yan, H.; Huang, X.; Huang, L.; Lu, M.; Zalalutdinov, M.; Chu, Y.S.; et al. Machine-learning-based automatic small-angle measurement between planar surfaces in interferometer images: A 2D multilayer Laue lenses case. Opt. Lasers Eng. 2023, 161, 107331. [Google Scholar] [CrossRef]
- Guo, X.; Guo, X.; Zou, Q.; Wulamu, A.; Yang, M.; Zheng, H.; Guo, X.; Zhang, T. FE-trans-net: Feature enhancement based single branch deep learning model for surface roughness detection. J. Manuf. Process. 2023, 105, 324–337. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Zhong, L.; Lu, X. Hybrid-net: A two-to-one deep learning framework for three-wavelength phase-shifting interferometry. Opt. Express 2021, 29, 34656–34670. [Google Scholar] [CrossRef]
- Zhenbo, R.; Zhimin, X.; Edmund, Y.M.L. End-to-end deep learning framework for digital holographic reconstruction. Adv. Photonics 2019, 1, 016004. [Google Scholar] [CrossRef]
- Van der Jeught, S.; Dirckx, J.J.J. Deep neural networks for single shot structured light profilometry. Opt. Express 2019, 27, 17091–17101. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, D.; Qiu, J.; Ke, C.; Su, R.; Shi, Y. Simulation-driven machine learning approach for high-speed correction of slope-dependent error in coherence scanning interferometry. Opt. Express 2023, 31, 36048–36060. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, X.; Yang, H.; Guo, C.; Wu, B.; Tan, J.; Wang, W. Simulation-driven learning: A deep learning approach for image scanning microscopy via physical imaging models. Opt. Express 2022, 30, 11848–11860. [Google Scholar] [CrossRef]
- Xin, L.; Liu, X.; Yang, Z.; Zhang, X.; Gao, Z.; Liu, Z. Three-dimensional reconstruction of super-resolved white-light interferograms based on deep learning. Opt. Lasers Eng. 2021, 145, 106663. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Li, H.; Song, N. White-Light Interference Microscopy Image Super-Resolution Using Generative Adversarial Networks. IEEE Access 2020, 8, 27724–27733. [Google Scholar] [CrossRef]
- Montresor, S.; Tahon, M.; Laurent, A.; Picart, P. Computational de-noising based on deep learning for phase data in digital holographic interferometry. APL Photonics 2020, 5, 030802. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, Y.; Li, G. An Accelerated Algorithm for 3D Reconstruction of Groove Structure Based on Parallel Light and White Light Interference. In Proceedings of the 2021 International Conference of Optical Imaging and Measurement (ICOIM), Xi’an, China, 27–29 August 2021; pp. 53–57. [Google Scholar]
- Nemes-Czopf, A.; Bercsényi, D.; Erdei, G. Simulation of relief-type diffractive lenses in ZEMAX using parametric modelling and scalar diffraction. Appl. Opt. 2019, 58, 8931–8942. [Google Scholar] [CrossRef]
- Yang, A.; Gao, X.; Li, M. Design of apochromatic lens with large field and high definition for machine vision. Appl. Opt. 2016, 55, 5977–5985. [Google Scholar] [CrossRef]
- Wang, X.; Wei, H. Cryptanalysis of compressive interference-based optical encryption using a U-net deep learning network. Opt. Commun. 2022, 507, 127641. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Jin, S.; Cao, L.; Jin, G. Dense-U-net: Dense encoder–decoder network for holographic imaging of 3D particle fields. Opt. Commun. 2021, 493, 126970. [Google Scholar] [CrossRef]
- Rampun, A.; Jarvis, D.; Griffiths, P.D.; Zwiggelaar, R.; Scotney, B.W.; Armitage, P.A. Single-Input Multi-Output U-Net for Automated 2D Foetal Brain Segmentation of MR Images. J. Imaging 2021, 7, 200. [Google Scholar] [CrossRef]
- Ma, L.; Yin, X.; Yang, F.; Liu, X.; Zhao, X.; Pei, X. Noise analysis and correction on carrier phase in coherence scanning interferometry for high accuracy surface topography measurements. Measurement 2025, 239, 115419. [Google Scholar] [CrossRef]
- Srivastava, V.; Inam, M.; Kumar, R.; Mehta, D.S. Single Shot White Light Interference Microscopy for 3D Surface Profilometry Using Single Chip Color Camera. J. Opt. Soc. Korea 2016, 20, 784–793. [Google Scholar] [CrossRef]
- Peter, L.; Tobias, P.; Jörg, R. Universal Fourier optics model for virtual coherence scanning interferometers. In Proceedings of the SPIE Optical Metrology, Munich, Germany, 10 August 2023; p. 126190O. [Google Scholar]
- Rong, S.; Richard, L. Physics-based virtual coherence scanning interferometer for surface measurement. Light Adv. Manuf. 2021, 2, 120–135. [Google Scholar] [CrossRef]
- Larkin, K.G. Efficient nonlinear algorithm for envelope detection in white light interferometry. J. Opt. Soc. Am. A 1996, 13, 832–843. [Google Scholar] [CrossRef]
- Chen, S.; Palmer, A.W.; Grattan, K.T.V.; Meggitt, B.T. Fringe order identification in optical fibre white-light interferometry using centroid algorithm method. Electron. Lett. 1992, 28, 553–555. [Google Scholar] [CrossRef]
- Pavliček, P.; Michálek, V. White-light interferometry—Envelope detection by Hilbert transform and influence of noise. Opt. Lasers Eng. 2012, 50, 1063–1068. [Google Scholar] [CrossRef]
- Vo, Q.; Fang, F.; Zhang, X.; Gao, H. Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms. Appl. Opt. 2017, 56, 8174–8185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-x.; Zhang, X.; Qiu, H.-r.; Zhou, H. Automatic wavefront reconstruction on single interferogram with spatial carrier frequency using Fourier transform. Optoelectron. Lett. 2020, 16, 75–80. [Google Scholar] [CrossRef]
- Lehmann, P.; Künne, M.; Pahl, T. Analysis of interference microscopy in the spatial frequency domain. J. Phys. Photonics 2021, 3, 014006. [Google Scholar] [CrossRef]
- Wu, D.; Liang, F.; Kang, C.; Fang, F. Performance Analysis of Surface Reconstruction Algorithms in Vertical Scanning Interferometry Based on Coherence Envelope Detection. Micromachines 2021, 12, 164. [Google Scholar] [CrossRef]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
Index | Distance | Position | Type | Homogeneous Medium |
---|---|---|---|---|
1 | 0 mm | 0 mm | Aspherical Interface | Abbe Number V-d Material |
2 | 80 μm | 80 μm | Conical Interface | S-TIH_OHARA |
3 | 2.5 mm | 2.58 mm | Conical Interface | S-BSM4_OHARA |
4 | 9 mm | 11.58 mm | Conical Interface | Air |
Surface Type | PV (μm) | Pitch (μm) | Phase (μm) |
---|---|---|---|
sin(x) | 0.35 | 5.5 | 0 |
2Posts | 1.57 | 5.5 | 2.5 |
step | 1.57 | \ | \ |
Methods | Centroid | Hilbert | FT | FDA | DNN |
---|---|---|---|---|---|
RMSE (nm) | 58.24 | 64.33 | 59.13 | 51.80 | 47.12 |
Methods | RMSE (nm) | ||||
---|---|---|---|---|---|
= 0 | = 0.025 | = 0.05 | = 0.075 | = 0.1 | |
Centroid | 40.01 | 55.35 | 72.43 | 84.08 | 99.34 |
Hilbert | 38.31 | 49.59 | 57.92 | 62.04 | 88.10 |
FT | 40.51 | 50.55 | 70.72 | 71.0 | 71.83 |
FDA | 33.79 | 34.29 | 40.39 | 48.80 | 56.60 |
DNN | 45.46 | 45.18 | 46.71 | 46.39 | 43.89 |
Methods | Computing Time (s) | ||
---|---|---|---|
Sin(x) | 2Posts | Step | |
Centroid | 1.32 | 1.35 | 1.31 |
Hilbert | 2.10 | 2.16 | 2.12 |
FT | 2.36 | 2.24 | 2.21 |
FDA | 12.11 | 12.13 | 12.01 |
DNN | 0.36 | 0.33 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, X.; Lian, Y.; Wang, Y.; Lu, Z. Simulation-Driven End-to-End Deep Learning Method for White-Light Interference Topography Reconstruction. Photonics 2025, 12, 702. https://doi.org/10.3390/photonics12070702
Qi X, Lian Y, Wang Y, Lu Z. Simulation-Driven End-to-End Deep Learning Method for White-Light Interference Topography Reconstruction. Photonics. 2025; 12(7):702. https://doi.org/10.3390/photonics12070702
Chicago/Turabian StyleQi, Xuan, Yudong Lian, Yulei Wang, and Zhiwei Lu. 2025. "Simulation-Driven End-to-End Deep Learning Method for White-Light Interference Topography Reconstruction" Photonics 12, no. 7: 702. https://doi.org/10.3390/photonics12070702
APA StyleQi, X., Lian, Y., Wang, Y., & Lu, Z. (2025). Simulation-Driven End-to-End Deep Learning Method for White-Light Interference Topography Reconstruction. Photonics, 12(7), 702. https://doi.org/10.3390/photonics12070702