A 6 kW Level Linearly Polarized Near-Diffraction-Limited Monolithic Fiber Laser with a 0.43 nm Linewidth
Abstract
1. Introduction
2. Experimental Setup
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mourou, G.; Brocklesby, B.; Tajima, T.; Limpert, J.; Schreiber, T.; Nolte, S.; Zervas, M. The future is fiber accelerators. Nat. Photonics 2013, 7, 258–261. [Google Scholar] [CrossRef]
- Breitkopf, S.; Eidam, T.; Klenke, A.; Grafenstein, L.; Carstens, H.; Holzberger, S.; Fill, E.; Schreiber, T.; Krausz, F.; Tünnermann, A.; et al. A concept for multiterawatt fiber lasers based on coherent pulse stacking in passive cavities. Light Sci. Appl. 2014, 3, e211. [Google Scholar] [CrossRef]
- Wei, L.; Cleva, F.; Man, C. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo. Opt. Lett. 2016, 41, 5817–5820. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, L.; Xu, J.; Ma, P.; Su, R.; Wu, J.; Liu, Z. High power linearly polarized fiber laser: Generation, manipulation and application. Sci. China Technol. Sci. 2017, 60, 1784–1800. [Google Scholar] [CrossRef]
- Zhou, P.; Jiang, M.; Wu, H.; Deng, Y.; Chang, H.; Huang, L.; Wu, J.; Xu, J.; Wang, X.; Leng, J. Fiber Laser from the Perspective of Interdisciplinarity: Review and Prospect [Invited]. Infrared Laser Eng. 2023, 52, 20230334. [Google Scholar]
- Li, H.; Xie, L.; Zhang, C.; Tao, R.; Shu, Q.; Li, M.; Shen, B.; Feng, X.; Xu, L.; Wang, J. Metasurface-generating high purity narrow linewidth cylindrical vector beams: Power scaling and its limitation. Front. Phys. 2023, 11, 1195655. [Google Scholar] [CrossRef]
- Tao, R.; Ma, P.; Wang, X.; Zhou, P.; Liu, Z. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities. Photon. Res. 2015, 3, 86–93. [Google Scholar] [CrossRef]
- Platonov, N.; Yagodkin, R.; DeLaCruz, J.; Yusim, A.; Gapontsev, V. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format. Proc. SPIE 2018, 10512, 57–64. [Google Scholar]
- Ren, S.; Ma, P.; Li, W.; Wang, G.; Chen, Y.; Song, J.; Liu, W.; Zhou, P. 3.96 kW all-fiberized linearly polarized and narrow linewidth fiber laser with near-diffraction-limited beam quality. Nanomaterials 2022, 12, 2541. [Google Scholar] [CrossRef]
- Chu, Q.; Shu, Q.; Li, F.; Guo, C.; Yan, Y.; Zhang, H.; Liu, Y.; Tao, R.; Lin, H.; Wang, J. Power scaling of high-power linearly polarized fiber lasers with <10 GHz linewidth. Front. Phys. 2023, 11, 1198305. [Google Scholar]
- Liao, S.; Luo, T.; Xiao, R.; Shu, C.; Cheng, J.; Zhang, Z.; Xing, Y.; Li, H.; Dai, N.; Li, J. 4.6 kW linearly polarized and narrow-linewidth monolithic fiber amplifier based on a fiber oscillator laser seed. Opt. Lett. 2023, 48, 6533–6536. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Peng, W.; Liu, H.; Yang, X.; Yu, H.; Wang, Y.; Wang, J.; Feng, Y.; Sun, Y.; Ma, Y.; et al. Linearly polarized fiber amplifier with narrow linewidth of 5 kW exhibiting a record output power and near-diffraction-limited beam quality. Opt. Lett. 2023, 48, 2909–2912. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, D.; Zhang, Y.; Li, P.; Wu, Y.; Yan, P.; Gong, M.; Xiao, Q. 3 kW narrow-linewidth linearly polarized fiber laser with high-purity single-mode output and high PER enabled by suppressing mode and polarization coupling. Opt. Laser Technol. 2025, 186, 112729. [Google Scholar] [CrossRef]
- Stolen, R. Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quantum Electron. 1979, 15, 1157–1160. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, C.; Liu, C.; Chu, Q.; Huang, L.; Zhu, Y.; Zhang, H.; Tao, R.; Lin, H.; Wang, J. SBS mitigation by manipulating the injecting polarization direction in a high-power monolithic PM amplifier. Photonics 2024, 11, 890. [Google Scholar] [CrossRef]
- Alegria, C.; Jeong, Y.; Codemard, C.; Sahu, J.K.; Alvarez-Chavez, J.A.; Fu, L. 83W Single-frequency narrow-linewidth MOPA using large-core erbium-Ytterbium co-doped fiber. IEEE Photon. Technol. Lett. 2004, 16, 1825–1827. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, S.; Liu, C.; Zhou, J.; Yan, F. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier. Opt. Express 2013, 21, 23318–23324. [Google Scholar] [CrossRef]
- Huang, L.; Wu, H.; Li, R.; Li, L.; Ma, P.; Wang, X.; Leng, J.; Zhou, P. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier. Opt. Lett. 2016, 42, 1–4. [Google Scholar] [CrossRef]
- Shi, W.; Petersen, E.B.; Yao, Z.; Nguyen, D.T.; Zong, J.; Stephen, M.; Pirson, A.; Peyghambarian, N. Kilowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm. Opt. Lett. 2010, 35, 2418. [Google Scholar] [CrossRef]
- Zeringue, C.; Dajani, I.; Naderi, S.; Moore, G.; Robin, C. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light. Opt. Express 2012, 20, 21196–21213. [Google Scholar] [CrossRef]
- Dajani, I.; Flores, A.; Holten, R.; Anderson, B.; Pulford, B.; Ehrenreich, T. Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers. Proc. SPIE 2016, 9728, 972801. [Google Scholar]
- Meng, D.; Ma, P.; Wang, X.; Ma, Y.; Su, R.; Zhou, P.; Yang, L. Kilowatt-level, high brightness, narrow-linewidth PM fiber amplifiers based on laser gain competition. Proc. SPIE 2019, 11023, 864–869. [Google Scholar]
- Chang, Z.; Wang, Y.; Sun, Y.; Peng, W.; Ke, W.; Ma, Y.; Zhu, R.; Tang, C. 1.5 kW polarization-maintained Yb-doped amplifier with 13 GHz linewidth by suppressing the self-pulsing and stimulated Brillouin scattering. Appl. Opt. 2019, 58, 6419–6425. [Google Scholar] [CrossRef]
- Xie, W.; Yang, Y.; Wang, H.; Wang, K.; Duan, X.; Liu, K.; Chen, X.; Xiong, X.; Zhang, D.; Meng, J. 3.05 kW, 13.7 GHz linewidth fiber amplifier based on PRBS phase modulation for SBS suppression. Appl. Opt. 2024, 63, 9–16. [Google Scholar] [CrossRef]
- Shi, M.; Wu, Y.; Li, J.; Fang, Z.; Wang, J.; Mu, H.; Yi, L. Research progress of high power narrow linewidth laser based on spectral broadening. Lasers Optoelectron. Prog. 2023, 60, 15. [Google Scholar]
- Khitrov, V.; Farley, K.; Leveille, R.; Galipeau, J.; Majid, I.; Christensen, S.; Samson, B.; Tankala, K. kW level narrow linewidth Yb fiber amplifiers for beam combining. Proc. SPIE 2010, 7686, 46–53. [Google Scholar]
- Anderson, B.; Robin, C.; Flores, A.; Dajani, I. Experimental study of SBS suppression via white noise phase modulation. Proc. SPIE 2014, 8961, 362–368. [Google Scholar]
- Ma, P.; Xiao, H.; Tao, R.; Liu, W.; Meng, D.; Leng, J.; Ma, Y.; Su, R.; Zhou, P.; Liu, Z. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression. High Power Laser Sci. Eng. 2018, 6, e1. [Google Scholar] [CrossRef]
- Li, T.; Zha, C.; Sun, Y.; Ma, Y.; Ke, W.; Peng, W. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser. Laser Phys. 2018, 28, 105101. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Ma, Y.; Chang, Z.; Peng, W.; Sun, Y. 2.5kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing. IEEE Photon. J. 2020, 12, 1502815. [Google Scholar]
- Prakash, R.; Vikram, B.S.; Supradeepa, V.R. Enhancing the efficacy of noise modulation for SBS suppression in high power, narrow linewidth fiber lasers by the incorporation of sinusoidal modulation. IEEE Photon. J. 2021, 13, 1500106. [Google Scholar] [CrossRef]
- Gu, Q.; Zhao, Q.; Yang, C.; Jiang, K.; Guan, X.; Zeng, C.; Jiang, W.; Sun, Y.; Huang, C.; Zhou, K.; et al. 2.02 kW and 4.7 GHz linewidth near-diffraction-limited all-fiber MOPA laser. Appl. Phys. Express 2022, 15, 032001. [Google Scholar] [CrossRef]
- Ren, S.; Chen, Y.; Ma, P.; Li, W.; Wang, G.; Liu, W.; Zhou, P. 4.5 kW, 0.33 nm near-single-mode narrow-linewidth bias-preserving fiber laser. High Power Laser Part. Beams 2022, 34, 137. [Google Scholar]
- Ren, S.; Ma, P.; Chen, Y.; Li, W.; Wang, G.; Liu, W.; Huang, L.; Pan, Z.; Yao, T.; Zhou, P. Narrow linewidth laser output of 5 kW class by domestically produced bias-preserving fiber. Infrared Laser Eng. 2023, 52, 443–444. [Google Scholar]
- Chen, Y.; Yang, H.; Ma, P.; Chen, Q.; Liu, W.; Pan, Z.; Chen, Z.; Xiao, H.; Wang, Z.; Chen, J. 5.85 kW polarization-maintained and all-fiberized amplifier with narrow linewidth and near-diffraction-limited beam quality assisted by low-numerical-aperture active fiber. Opt. Laser Technol. 2025, 190, 113208. [Google Scholar]
- Bochove, E.J. Theory of spectral beam combining of fiber lasers. IEEE J. Quantum Electron. 2002, 38, 432–445. [Google Scholar] [CrossRef]
- Sprangle, P.; Ting, A.; Penano, J.; Hafizi, B.; Gordon, D.; Fischer, R. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications. IEEE J. Quantum Electron. 2009, 45, 138–148. [Google Scholar] [CrossRef]
- Goodno, G.D.; Shih, C.C.; Rothenberg, J.E. Perturbative analysis of coherent combining efficiency with mismatched lasers. Opt. Express 2010, 18, 25403–25414. [Google Scholar] [CrossRef] [PubMed]
- McNaught, S.J.; Thielen, P.A.; Adams, L.N.; Ho, J.; Johnson, A.; Machan, J. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 174–181. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, Q.; Li, D.; Xin, J.; Wang, Z.; Tian, J.; Wu, Y.; Gong, M.; Zhu, L.; Yan, P. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating. Opt. Laser Technol. 2021, 133, 106538. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, Q.; Li, D.; Qi, T.; Tian, J.; Wang, L.; Yan, P.; Gong, M. Thermal induced polarization coupling in double-cladding linearly polarized fiber lasers. Opt. Commun. 2022, 512, 128036. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, P.; Li, D.; Li, G.; Chen, S.; Gong, M.; Xiao, Q. Polarization extinction ratio promotion in high-power linearly polarized fiber lasers. Opt. Laser Technol. 2025, 181, 111909. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, W.; Li, Y.; Li, Y.; Huang, S.; Tao, R.; Lin, H.; Wang, J. Experimental study of chemical-etched high-power cladding mode stripping device toward high attenuation. Opt. Laser Technol. 2023, 162, 109234. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, C.; Zhu, Y.; Gao, Z.; Jiang, X.; Tao, R.; Chu, Q.; Shu, Q.; Li, F.; Zhang, H.; et al. Origin of SBS-induced mode distortion in high power narrow linewidth fiber amplifiers. Photon. Res. 2025, 13, 1631–1636. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Chen, H.; Li, J.; Hou, J. Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique. Opt. Laser Technol. 2013, 47, 72–75. [Google Scholar] [CrossRef]
- Xiong, F.; Mu, W.; Wang, Y.; Ma, Y.; Xu, C.; Zhang, Q.; Zhang, X. High-efficiency mode field adapter for low NA large mode area fibers. Acta Photon. Sin. 2024, 53, 0806001. [Google Scholar]
- Jeong, Y.; Sahu, J.K.; Soh, D.B.S.; Nilsson, J. High-power tunable single-frequency single-mode erbium: Ytterbium codoped large-core fiber master-oscillator power amplifier source. Opt. Lett. 2005, 30, 2997–2999. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Su, R.; Ma, P.; Wang, X.; Zhou, P. Suppressing mode instabilities by optimizing the fiber coiling methods. Laser Phys. Lett. 2016, 14, 025101. [Google Scholar] [CrossRef]
- Jauregui, C.; Stihler, C.; Limpert, J. Transverse mode instability. Adv. Opt. Photonics 2020, 12, 429–484. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st Century; Springer: Berlin/Heidelberg, Germany, 2000; pp. 195–211. [Google Scholar]
- Jenkins, R.B.; Sova, R.M.; Joseph, R.I. Steady-state noise analysis of spontaneous and stimulated Brillouin scattering in optical fibers. J. Light. Technol. 2007, 25, 763–770. [Google Scholar] [CrossRef]
- Ran, Y.; Wang, X.; Lv, H.; Su, R.; Zhou, P.; Si, L. Novel suppression method for stimulated Brillouin scattering by simultaneous phase and intensity modulation in fiber amplifiers. Chin. J. Lasers 2015, 42, 0805003. [Google Scholar]
- Eznaveh, Z.S.; Lopez-Galmiche, G.; Antonio-Lopez, E.; Amezcua-Correa, R. Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers. Proc. SPIE 2015, 9344, 407–411. [Google Scholar]
- Wang, G.; Song, J.; Chen, Y.; Ren, S.; Ma, P.; Liu, W.; Yao, T.; Zhou, P. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality. High Power Laser Sci. Eng. 2022, 10, e22. [Google Scholar] [CrossRef]
- Tao, R.; Ma, P.; Wang, X.; Zhou, P.; Liu, Z. Theoretical study of pump power distribution on modal instabilities in high power fiber amplifiers. Laser Phys. Lett. 2016, 14, 025002. [Google Scholar] [CrossRef]
- Yoda, H.; Polynkin, P.; Mansuripur, M. Beam quality factor of higher order modes in a step-index fiber. J. Light. Technol. 2006, 24, 1350–1355. [Google Scholar] [CrossRef]
- Wielandy, S. Implications of higher-order mode content in large mode area fibers with good beam quality. Opt. Express 2007, 15, 15402–15409. [Google Scholar] [CrossRef]
- Tao, R.; Huang, L.; Li, M.; Shen, B.; Feng, X.; Xie, L.; Weng, J.; Zhi, D. M2 factor for evaluating fiber lasers from large mode area few-mode fibers. Front. Phys. 2023, 11, 1082086. [Google Scholar] [CrossRef]
- Li, D.; Niu, X.; Ji, X.; Jiao, H.; Zhang, J.; Xing, Y.; Zhang, J.; Dun, X.; Cheng, X.; Wang, Z.; et al. High beam quality 10 kW light source based on thin-film beam combination. High Power Laser Sci. Eng. 2024, 12, e55. [Google Scholar]
- Zhang, C.; Chu, Q.; Feng, X.; Xie, L.; Liu, Y.; Li, H. Mode evolution of high power monolithic PM fiber amplifiers in the presence of SRS effect. IEEE Photon. Technol. Lett. 2022, 34, 215–218. [Google Scholar] [CrossRef]
- Huang, L.; Guo, S.; Leng, J.; Lu, H.; Zhou, P.; Cheng, X. Real-time mode decomposition for few-mode fiber based on numerical method. Opt. Express 2015, 23, 4620–4629. [Google Scholar] [CrossRef]
- Tao, R.; Ma, P.; Wang, X.; Zhou, P.; Liu, Z. Experimental study on mode instabilities in all-fiberized high-power fiber amplifiers. Chin. Opt. Lett. 2014, 12, s20603. [Google Scholar] [CrossRef]
- Bowers, M.S.; Luzod, N.M. Stimulated Brillouin scattering in optical fibers with end reflections excited by broadband pump waves. Opt. Eng. 2019, 58, 102702. [Google Scholar] [CrossRef]
- Li, W.; Deng, Y.; Qi, C.; Chen, Y.; Ma, P.; Liu, W.; Zhou, P.; Si, L. Evaluation of the impact of weak end feedback on the SBS threshold in high-power narrow-linewidth fiber amplifiers. Opt. Express 2024, 32, 16478–16490. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers. Opt. Eng. 2005, 44, 114202. [Google Scholar] [CrossRef]
- Ma, P.; Xiao, H.; Liu, W.; Zhang, H.; Wang, X.; Leng, J.; Zhou, P. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on a bidirectional pumping configuration. High Power Laser Sci. Eng. 2021, 9, e45. [Google Scholar] [CrossRef]
- Liu, W.; Song, J.; Ma, P.; Xiao, H.; Zhou, P. Effects of background spectral noise in the phase-modulated single-frequency seed laser on high-power narrow-linewidth fiber amplifiers. Photonics Res. 2021, 9, 424–431. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, H.; Fu, X.; Tian, Y.; Wang, H.; Zhang, Y. Threshold characteristics analysis of SBS spectrum in few-mode fibers. Spectrosc. Spect. Anal. 2018, 38, 285–289. [Google Scholar]
- Ma, P.; Tao, R.; Su, R.; Wang, X.; Zhou, P.; Liu, Z. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality. Opt. Express 2016, 24, 4187–4195. [Google Scholar] [CrossRef]
- Dragic, P.D. Brillouin suppression by fiber design. In Proceedings of the IEEE Photonics Society Summer Topicals 2010, Playa del Carmen, Mexico, 19–21 July 2010; pp. 151–152. [Google Scholar]
- Dragic, P.D.; Ballato, J.; Morris, S.; Hawkins, T. The Brillouin gain coefficient of Yb-doped aluminosilicate glass optical fibers. Opt. Mater. 2013, 35, 1627–1632. [Google Scholar] [CrossRef]
- Dragic, P.D. Brillouin gain reduction via B2O3 doping. J. Light. Technol. 2011, 29, 967–973. [Google Scholar] [CrossRef]
- Dragic, P.D.; Cavillon, M.; Ballato, A.; Ballato, J. A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients. Int. J. Appl. Glass Sci. 2018, 9, 307–318. [Google Scholar] [CrossRef]
- Hawkins, T.W.; Dragic, P.D.; Yu, N.; Flores, M.; Engholm, M.; Ballato, J. Kilowatt power scaling of an intrinsically low Brillouin and thermo-optic Yb-doped silica fiber. J. Opt. Soc. Am. B 2021, 38, F38–F49. [Google Scholar] [CrossRef]
- Rosales-García, A.; Jensen, R.; Kristensen, P.; Nicholson, J.W.; Ovtar, S.; Mitrovic, M.; Ingerslev, K.; Edvold, B.; Christensen, J.; Pincha, J.; et al. 5.2 kW single-mode output power from a Yb 20/400 fiber with reduced thermo-optic coefficient. Proc. SPIE 2024, 12865, 64–67. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Shu, Q.; Li, F.; Zhang, C.; Li, F.; Jiang, X.; Wen, Y.; Chen, C.; Li, L.; Chu, Q.; et al. A 6 kW Level Linearly Polarized Near-Diffraction-Limited Monolithic Fiber Laser with a 0.43 nm Linewidth. Photonics 2025, 12, 701. https://doi.org/10.3390/photonics12070701
Gao Z, Shu Q, Li F, Zhang C, Li F, Jiang X, Wen Y, Chen C, Li L, Chu Q, et al. A 6 kW Level Linearly Polarized Near-Diffraction-Limited Monolithic Fiber Laser with a 0.43 nm Linewidth. Photonics. 2025; 12(7):701. https://doi.org/10.3390/photonics12070701
Chicago/Turabian StyleGao, Zixiang, Qiang Shu, Fang Li, Chun Zhang, Fengyun Li, Xingchen Jiang, Yu Wen, Cheng Chen, Li Li, Qiuhui Chu, and et al. 2025. "A 6 kW Level Linearly Polarized Near-Diffraction-Limited Monolithic Fiber Laser with a 0.43 nm Linewidth" Photonics 12, no. 7: 701. https://doi.org/10.3390/photonics12070701
APA StyleGao, Z., Shu, Q., Li, F., Zhang, C., Li, F., Jiang, X., Wen, Y., Chen, C., Li, L., Chu, Q., Tao, R., Lin, H., Peng, Z., & Wang, J. (2025). A 6 kW Level Linearly Polarized Near-Diffraction-Limited Monolithic Fiber Laser with a 0.43 nm Linewidth. Photonics, 12(7), 701. https://doi.org/10.3390/photonics12070701