Adaptive DBP System with Long-Term Memory for Low-Complexity and High-Robustness Fiber Nonlinearity Mitigation †
Abstract
1. Introduction
2. Principle
3. Results
3.1. Simulation System and Result Analysis
3.1.1. Description of the Simulation Setup
3.1.2. Analysis and Discussion of Simulation Results
3.1.3. Computational Effort Analysis
3.2. Experimental System and Result Analysis
3.2.1. Description of the Experimental System
3.2.2. Analysis of Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warf, B. International Competition Between Satellite and Fiber Optic Carriers: A Geographic Perspective*. Prof. Geogr. 2006, 58, 1–11. [Google Scholar]
- Lau, A.P.T.; Gao, Y.; Sui, Q.; Wang, D.; Zhuge, Q.; Morsy-Osman, M.H.; Chagnon, M.; Xu, X.; Lu, C.; Plant, D.V. Advanced DSP Techniques Enabling High Spectral Efficiency and Flexible Transmissions: Toward elastic optical networks. IEEE Signal Process. 2014, 31, 82–92. [Google Scholar] [CrossRef]
- Winzer, P.J.; Neilson, D.T.; Chraplyvy, A.R. Fiber-optic transmission and networking: The previous 20 and the next 20 years. Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef] [PubMed]
- Amari, A.; Dobre, O.A.; Venkatesan, R.; Kumar, O.S.S.; Ciblat, P.; Jaouen, Y. A Survey on Fiber Nonlinearity Compensation for 400 Gb/s and Beyond Optical Communication Systems. IEEE Commun. Surv. Tutor. 2017, 19, 3097–3113. [Google Scholar] [CrossRef]
- Kuzucu, O.; Okawachi, Y.; Salem, R.; Foster, M.A.; Turner-Foster, A.C.; Lipson, M.; Gaeta, A.L. Spectral phase conjugation via temporal imaging. Opt. Express 2009, 17, 20605–20614. [Google Scholar]
- Ip, E.; Kahn, J.M. Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation. J. Light. Technol. 2008, 26, 3416–3425. [Google Scholar]
- Yaman, F.; Li, G. Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation. IEEE Photon J. 2010, 2, 816–832. [Google Scholar] [CrossRef]
- Du, L.B.; Lowery, A.J. Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems. Opt. Express 2010, 18, 17075–17088. [Google Scholar]
- Lin, C.-Y.; Napoli, A.; Spinnler, B.; Sleiffer, V.A.; Rafique, D.; Kuschnerov, M.; Bohn, M.; Schmauss, B. Adaptive Digital Back-Propagation for Optical Communication Systems. In Proceedings of the Optical Fiber Communication Conference, OSA Technical Digest (Online), San Francisco, CA, USA, 9–13 March 2014; Optica Publishing Group: Washington, DC, USA, 2014; p. M3C.4. [Google Scholar]
- Jiang, L.; Yan, L.; Chen, Z.; Yi, A.; Pan, Y.; Pan, W.; Luo, B.; Li, G. Adaptive digital backward propagation based on variance of intensity noise. Chin. Opt. Lett. 2015, 13, 110602. [Google Scholar] [CrossRef]
- Gonçalves, J.; Martins, C.S.; Guiomar, F.P.; Cunha, T.R.; Pedro, J.C.; Pinto, A.N.; Lavrador, P.M. Nonlinear compensation with DBP aided by a memory polynomial. Opt. Express 2016, 24, 30309–30316. [Google Scholar]
- Jiang, L.; Yan, L.; Yi, A.; Pan, Y.; Ge, J.; Dai, L.; Pan, W.; Luo, B. Toward Blind Nonlinearity Estimation in Back-Propagation Algorithm for Coherent Optical Transmission Systems. In Proceedings of the Optical Fiber Communication Conference, OSA Technical Digest (Online), Los Angeles, CA, USA, 19–23 March 2017; Optica Publishing Group: Washington, DC, USA, 2017; p. W1G.3. [Google Scholar]
- Zhang, F.; Zhuge, Q.; Qiu, M.; Zhou, X.-Y.; Sowailem, M.Y.; Hoang, T.M.; Xiang, M.; Plant, D.V. Blind Adaptive Digital Backpropagation for Fiber Nonlinearity Compensation. J. Light. Technol. 2017, 36, 1746–1756. [Google Scholar] [CrossRef]
- Martins, C.S.; Bertignono, L.; Nespola, A.; Carena, A.; Guiomar, F.P.; Pinto, A.N. Low-Complexity Time-Domain DBP Based on Random Step-Size and Partitioned Quantization. J. Light. Technol. 2018, 36, 2888–2895. [Google Scholar] [CrossRef]
- Wang, C.; Tian, F.; Wang, Y.; Zhang, Q.; Tian, Q.; Gao, R.; Wang, X.; Pan, X.; Yang, L.; Xin, X. Digital back propagation based on the feedback-convergence for fiber nonlinearity compensation with low computational complexity and high performance. Opt. Commun. 2020, 471, 126050. [Google Scholar] [CrossRef]
- Júnior, J.H.C.; Sutili, T.; Rossi, S.M.; Figueiredo, R.C.; Mello, D.A.A. Fast Adaptive Digital Back-Propagation Algorithm for Unrepeatered Optical Systems. In Proceedings of the Optical Fiber Communication Conference, OSA Technical Digest, San Diego, CA, USA, 8–12 March 2020; Optica Publishing Group: Washington, DC, USA, 2020; p. T4I.2. [Google Scholar]
- Maghrabi, M.M.T.; Bakr, M.H.; Kumar, S. Adaptive digital back propagation exploiting adjoint-based optimization for fiber-optic communications. Opt. Express 2022, 30, 16264–16288. [Google Scholar]
- Guiomar, F.P.; Amado, S.B.; Martins, C.S.; Pinto, A.N. Time-Domain Volterra-Based Digital Backpropagation for Coherent Optical Systems. J. Light. Technol. 2015, 33, 3170–3181. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Zhang, Y. Blind back-propagation method for fiber nonlinearity compensation with low computational complexity and high performance. Opt. Express 2020, 28, 11424–11438. [Google Scholar] [CrossRef]
- Zhang, S.; Yaman, F.; Nakamura, K.; Inoue, T.; Kamalov, V.; Jovanovski, L.; Vusirikala, V.; Mateo, E.; Inada, Y.; Wang, T. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks. Nat. Commun. 2019, 10, 3033. [Google Scholar]
- Deligiannidis, S.; Mesaritakis, C.; Bogris, A. Performance and Complexity Analysis of Bi-Directional Recurrent Neural Network Models Versus Volterra Nonlinear Equalizers in Digital Coherent Systems. J. Light. Technol. 2021, 39, 5791–5798. [Google Scholar] [CrossRef]
- Khan, F.N.; Fan, Q.; Lu, C.; Lau, A.P.T. An Optical Communication’s Perspective on Machine Learning and Its Applications. J. Light. Technol. 2019, 37, 493–516. [Google Scholar] [CrossRef]
- Chi, X.; Bai, C.; Yang, F.; Qi, Q.; Zhang, R.; Xu, H.; Yang, L.; Bi, W.; Chen, T.; Bai, S. Joint intra and inter-channel nonlinear compensation scheme based on improved learned digital back propagation for WDM systems. Opt. Express 2024, 32, 5095. [Google Scholar]
- Oliari, V.; Goossens, S.; Hager, C.; Liga, G.; Butler, R.M.; Hout, M.v.D.; van der Heides, S.; Pfister, H.D.; Okonkwo, C.; Alvarado, A. Revisiting Efficient Multi-Step Nonlinearity Compensation With Machine Learning: An Experimental Demonstration. J. Light. Technol. 2020, 38, 3114–3124. [Google Scholar]
- Häger, C.; Pfister, H.D. Nonlinear Interference Mitigation via Deep Neural Networks. In Proceedings of the 2018 Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; p. W3A.4. [Google Scholar]
- Huang, J.; Yi, A.; Yan, L.; He, X.; Jiang, L.; Yang, H.; Luo, B.; Pan, W. Fast fiber nonlinearity compensation method for PDM coherent optical transmission systems based on the Fourier neural operator. Opt. Express 2024, 32, 2245. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Q.; Gao, R.; Xin, X.; Wang, X.; Tian, Q.; Tian, F.; Wang, Y.; Hou, Y.; Yang, L. Fast adaptive digital back-propagation algorithm for fiber nonlinear compensation. In Proceedings of the Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications, OSA Technical Digest, Beijing, China, 24–27 October 2020; Optica Publishing Group: Washington, DC, USA, 2020; p. M4A.241. [Google Scholar]
- Yao, H.; Li, W.; Han, J.; He, Z.; Yuan, Z.; Hu, Q.; Yang, Q.; Yu, S. A Modified Adaptive DBP for DP 16-QAM Coherent Optical System. IEEE Photon-Technol. Lett. 2016, 28, 2511–2514. [Google Scholar]
- Chen, Z.; Yan, L.; Yi, A.; Jiang, L.; Pan, Y.P.W.; Luo, B. Low complexity and adaptive nonlinearity compensation. In Proceedings of the Conference on Lasers and Electro-Optics, OSA Technical Digest (Online), San Jose, CA, USA, 10–15 May 2015; Optica Publishing Group: Washington, DC, USA, 2015; p. SM2M.6. [Google Scholar]
- Liu, Y.; Xie, Z.; Zuo, M.; Wang, D.; Cao, S.; Li, Y.; Zhang, D. Improved Fast Anti-fluctuation Adaptive Digital Back-Propagation for Kerr-nonlinearity Compensation. In Proceedings of the 2023 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 2–6 July 2023; pp. 1–3. [Google Scholar]
- Liu, Y.; Zuo, M.; Wang, D.; Xie, Z.; Zhao, X.; Zheng, Z.; Cao, S.; Li, Y.; Zhang, D.; Li, H. Fast and High-Robustness Adaptive Digital Back-Propagation for Fiber Nonlinearity Compensation. In Proceedings of the 2023 Asia Communications and Photonics Conference/2023 International Photonics and Optoelectronics Meetings (ACP/POEM), Wuhan, China, 4–7 November 2023; pp. 1–4. [Google Scholar]
- Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Academic Press: Oxford, UK, 2012. [Google Scholar]
- Millar, D.S.; Makovejs, S.; Behrens, C.; Hellerbrand, S.; Killey, R.I.; Bayvel, P.; Savory, S.J. Mitigation of Fiber Nonlinearity Using a Digital Coherent Receiver. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1217–1226. [Google Scholar]
- Kudo, R.; Kobayashi, T.; Ishihara, K.; Takatori, Y.; Sano, A.; Miyamoto, Y. Coherent Optical Single Carrier Transmission Using Overlap Frequency Domain Equalization for Long-Haul Optical Systems. J. Light. Technol. 2009, 27, 3721–3728. [Google Scholar] [CrossRef]
- Huk, M. Stochastic optimization of contextual neural networks with RMSprop. In Intelligent Information and Database Systems; Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 343–352. [Google Scholar]
- Spinnler, B. Equalizer Design and Complexity for Digital Coherent Receivers. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1180–1192. [Google Scholar] [CrossRef]
- Guiomar, F.P.; Pinto, A.N. Simplified Volterra Series Nonlinear Equalizer for Polarization-Multiplexed Coherent Optical Systems. J. Light. Technol. 2013, 31, 3879–3891. [Google Scholar] [CrossRef]
- Mateo, E.F.; Yaman, F.; Li, G. Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission. Opt. Express 2010, 18, 15144–15154. [Google Scholar] [CrossRef]
Conventional DBP | Proposed Method | |
---|---|---|
512 | 512 | |
128 | 128 | |
2 | 2 | |
1 | 4 | |
1083 | 742 |
Conventional DBP | Proposed Method | |
---|---|---|
1083 | 742 | |
31.5% | − |
GDA-Based A-DBP | GDAM-Based A-DBP | Proposed Method | |
---|---|---|---|
0.46 | 0.63 | 0.19 | |
58.7% | 69.8% | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, M.; Yang, H.; Liu, Y.; Xie, Z.; Wang, D.; Cao, S.; Zheng, Z.; Li, H. Adaptive DBP System with Long-Term Memory for Low-Complexity and High-Robustness Fiber Nonlinearity Mitigation. Photonics 2025, 12, 704. https://doi.org/10.3390/photonics12070704
Zuo M, Yang H, Liu Y, Xie Z, Wang D, Cao S, Zheng Z, Li H. Adaptive DBP System with Long-Term Memory for Low-Complexity and High-Robustness Fiber Nonlinearity Mitigation. Photonics. 2025; 12(7):704. https://doi.org/10.3390/photonics12070704
Chicago/Turabian StyleZuo, Mingqing, Huitong Yang, Yi Liu, Zhengyang Xie, Dong Wang, Shan Cao, Zheng Zheng, and Han Li. 2025. "Adaptive DBP System with Long-Term Memory for Low-Complexity and High-Robustness Fiber Nonlinearity Mitigation" Photonics 12, no. 7: 704. https://doi.org/10.3390/photonics12070704
APA StyleZuo, M., Yang, H., Liu, Y., Xie, Z., Wang, D., Cao, S., Zheng, Z., & Li, H. (2025). Adaptive DBP System with Long-Term Memory for Low-Complexity and High-Robustness Fiber Nonlinearity Mitigation. Photonics, 12(7), 704. https://doi.org/10.3390/photonics12070704