A Low-Cost Portable SDIMM for Daytime Atmospheric Optical Turbulence Measurement in Observatory Site Testing: Primary Results from Ali Site
Abstract
1. Introduction
2. Measurement Principles
2.1. Measurement Principles of
2.2. Estimating
3. Instrument Implementation
3.1. Hardware Configuration
- Telescope: A Ritchey-Chretien(RC) system with a 200 mm aperture and an focal ratio, constructed with a carbon fiber tube.
- Aperture Mask: A dual sub-aperture entrance pupil mask was employed, featuring an effective sub-aperture diameter D=50 mm and a sub-aperture center distance of 150 mm.
- Wedge prism: Defined as , with an effective aperture diameter of mm.
- Detector: A Basler GS3-U3-60QS6M cameraThe GS3-U3-60QS6M camera (FLIR Systems, Inc., Wilsonville, OR, USA), procured from China, equipped with a pixel size of and a pixel count of . Installed at the focal plane of the telescope, it can capture 45% of the solar limb at a frequency of 36 Hz. The camera is equipped with a custom image acquisition board that implements real-time subframe selection, reducing data throughput while maintaining high temporal resolution.
- Solar filter: An astroSolar Planetarium filter with a transmission rate of was utilized.
- Mount: A lightweight German equatorial mount (e.g., Sky-Watcher EQ5 Pro (Sky-Watcher, Taoyuan, Taiwan) procured from China), with a payload capacity of 15 kg is employed to balance tracking precision and portability.
3.2. Optical Calibration
- 1.
- Point the telescope at a reference star. This is a critical step for conducting optical measurements.
- 2.
- Fix the camera and rotate the optical wedge until the two star spots align parallel to the horizontal axis of the detector. During this process, the two separate solar images will also be aligned horizontally with each other.
3.3. Data Collection
- 1.
- Obtain a full-size image of the Sun from the CCD image (Figure 4a).
- 2.
- Detect and fit the centers of the two solar images using the Least Squares Method, based on edge detection points highlighted in pink and green in Figure 4b.
- 3.
- Extract a pixel region around the solar edges.
- 4.
- Acquire images from the extracted region with an exposure time of , and set sampling positions at pixels (marked with red squares in Figure 4c).
- 5.
- Measure the distance between the two solar edges.
- 6.
- Repeat steps 5 and 6 to collect 1000 image samples.
- 7.
- Calculate the distance variance and value of using Formulas (3) and (5).
3.4. Calibration and Validation
4. Primary Results at Ali Site
4.1. Detailed Installation Process
4.2. Data Acquisition Process
4.3. Field Testing Results and Analysis
5. Discussion
6. Conclusions
- Elevating the system to minimize near-surface turbulence interference.
- Extending the observation period to capture a full seasonal cycle.
- Deploying the system at multiple high-altitude sites for comparative analysis.
- Integrating meteorological sensors to correlate atmospheric conditions (e.g., wind, temperature, and humidity) with r0 variations.
- Refining the image processing algorithms to minimize latency and enhance real-time processing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quirrenbach, A. The effects of atmospheric turbulence on astronomical observations. A. Extrasolar Planets. Saas-Fee Adv. Course 2006, 31, 137. [Google Scholar]
- Roddier, F. V the effects of atmospheric turbulence in optical astronomy. In Progress in Optics; Elsevier: Amsterdam, The Netherlands, 1981; Volume 19, pp. 281–376. [Google Scholar]
- Beckers, J.M. A seeing monitor for solar and other extended object observations. Exp. Astron. 2001, 12, 1–20. [Google Scholar] [CrossRef]
- Fried, D.L. Statistics of a geometric representation of wavefront distortion. J. Opt. Soc. Am. 1965, 55, 1427–1435. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y. Reference optical turbulence characteristics at the Large Solar Vacuum Telescope site. Publ. Astron. Soc. Jpn. 2024, 76, 538–549. [Google Scholar] [CrossRef]
- Sarazin, M.; Roddier, F. The ESO differential image motion monitor. Astron. Astrophys. 1990, 227, 294–300. [Google Scholar]
- Tokovinin, A. From differential image motion to seeing. Publ. Astron. Soc. Pac. 2002, 114, 1156. [Google Scholar] [CrossRef]
- Kellerer, A.; Gorceix, N.; Marino, J.; Cao, W.; Goode, P. Profiles of the daytime atmospheric turbulence above Big Bear solar observatory. Astron. Astrophys. 2012, 542, A2. [Google Scholar] [CrossRef]
- Zhong, L.; Beckers, J.M. Comparative solar seeing and scintillation studies at the Fuxian Lake solar station. Sol. Phys. 2001, 198, 197–209. [Google Scholar] [CrossRef]
- Beckers, J.M. Design of a large low-scattered light telescope for solar observations. Adv. Technol. Opt./IR Telesc. VI 1998, 3352, 588–602. [Google Scholar]
- Yao, Y.; Zhou, Y.; Liu, L.; Wang, H.; Yin, J.; You, X.; Fu, X. Atmospheric monitoring strategy for the Ali site, Tibet. J. Phys. Conf. Ser. 2015, 595, 012038. [Google Scholar] [CrossRef]
- Liu, L.; Yao, Y.; Vernin, J.; Wang, H.; Yin, J.; Qian, X. Multi-instrument characterization of optical turbulence at the Ali observatory. J. Phys. Conf. Ser. 2015, 595, 012019. [Google Scholar] [CrossRef]
- Hill, J.M.; Green, R.F.; Slagle, J.H. The large binocular telescope. Ground-Based Airborne Telesc. 2006, 6267, 318–332. [Google Scholar]
- Tokovinin, A.; Kornilov, V. Accurate seeing measurements with MASS and DIMM. Mon. Not. R. Astron. Soc. 2007, 381, 1179–1189. [Google Scholar] [CrossRef]
- Özışık, T.; Ak, T. First day-time seeing observations at the TÜBİTAK National Observatory in Turkey. Astron. Astrophys. 2004, 422, 1129–1133. [Google Scholar] [CrossRef]
- Scharmer, G.; Van Werkhoven, T. S-DIMM+ height characterization of day-time seeing using solar granulation. Astron. Astrophys. 2010, 513, A25. [Google Scholar] [CrossRef]
- Song, T.; Wen, Y.; Liu, Y.; Elmhamdi, A.; Kordi, A.; Zhao, M.; Zhang, X.; Li, X.; Wang, J.; Fu, Y.; et al. Automatic solar seeing observations at mt. wumingshan in western china. Sol. Phys. 2018, 293, 1–14. [Google Scholar] [CrossRef]
- Yao, Y. The astronomical site survey in west China. J. Korean Astron. Soc. 2005, 38, 113–116. [Google Scholar] [CrossRef]
- Qian, X.; Yao, Y.; Zou, L.; Wang, H.; Li, J. Optical turbulence in the atmospheric surface layer at the Ali Observatory, Tibet. Mon. Not. R. Astron. Soc. 2022, 510, 5179–5186. [Google Scholar] [CrossRef]
- Cao, Z.; Hao, J.X.; Feng, L.; Jones, H.; Li, J.; Xu, J.; Liu, L.Y.; Song, T.F.; Wang, J.F.; Chen, H.L.; et al. Data processing and data products from 2017 to 2019 campaign of astronomical site testing at Ali, Daocheng and Muztagh-ata. Res. Astron. Astrophys. 2020, 20, 82. [Google Scholar] [CrossRef]
- Liu, L.Y.; Yao, Y.Q.; Yin, J.; Wang, H.S.; Li, J.R.; Zhou, Y.H.; You, X.L.; Tang, P.; Zhao, X.Y.; Ma, D.Q.; et al. Site testing campaign for the Large Optical Telescope at the Ali site. Res. Astron. Astrophys. 2020, 20, 84. [Google Scholar] [CrossRef]
- Feng, L.; Hao, J.X.; Cao, Z.H.; Bai, J.M.; Yang, J.; Zhou, X.; Yao, Y.Q.; Hou, J.L.; Zhao, Y.H.; Liu, Y.; et al. Site testing campaign for the Large Optical/infrared Telescope of China: Overview. Res. Astron. Astrophys. 2020, 20, 80. [Google Scholar] [CrossRef]
- Xu, J.; Esamdin, A.; Hao, J.X.; Bai, J.M.; Yang, J.; Zhou, X.; Yao, Y.Q.; Hou, J.L.; Pu, G.X.; Feng, G.J.; et al. Site testing at Muztagh-ata site II: Seeing statistics. Res. Astron. Astrophys. 2020, 20, 087. [Google Scholar] [CrossRef]
- Deng, L.; Yang, F.; Chen, X.; He, F.; Liu, Q.; Zhang, B.; Zhang, C.; Wang, K.; Liu, N.; Ren, A.; et al. Lenghu on the Tibetan Plateau as an astronomical observing site. Nature 2021, 596, 353–356. [Google Scholar] [CrossRef]
- Song, T.F.; Liu, Y.; Wang, J.X.; Zhang, X.F.; Liu, S.Q.; Zhao, M.Y.; Li, X.B.; Cai, Z.C.; Song, Q.W.; Cao, Z.H.; et al. Site testing campaign for the Large Optical/infrared Telescope of China: General introduction of the Daocheng site. Res. Astron. Astrophys. 2020, 20, 085. [Google Scholar] [CrossRef]
- Song, T.; Cai, Z.; Liu, Y.; Zhao, M.; Fang, Y.; Zhang, X.; Wang, J.; Li, X.; Song, Q.; Du, Z. Daytime optical turbulence profiling with a profiler of the differential solar limb. Mon. Not. R. Astron. Soc. 2020, 499, 1909–1917. [Google Scholar] [CrossRef]
- Ikhlef, R.; Corbard, T.; Morand, F.; Renaud, C.; Fodil, M.; Ziad, A.; Borgnino, J.; Meftah, M.; Assus, P.; Chauvineau, B.; et al. MISOLFA: A generalized monitor for daytime spatio-temporal turbulence characterization. Mon. Not. R. Astron. Soc. 2016, 458, 517–530. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Qing, C.; Kopylov, E.A.; Potanin, S.A.; Kovadlo, P.G. Vertical Distribution of Optical Turbulence at the Peak Terskol Observatory and Mount Kurapdag. Remote Sens. 2024, 16, 2102. [Google Scholar] [CrossRef]
- Osborn, J.; Wilson, R.; Butterley, T.; Shepherd, H.; Sarazin, M. Profiling the surface layer of optical turbulence with SLODAR. Mon. Not. R. Astron. Soc. 2010, 406, 1405–1408. [Google Scholar] [CrossRef]
- Paxman, R.G.; Seldin, J.H.; Lofdahl, M.G.; Scharmer, G.B.; Keller, C.U. Evaluation of Phase-Diversity Techniques for Solar-Image Restoration; Technical Report; NASA-CR-200131. 1995. Available online: https://ntrs.nasa.gov/api/citations/19960014821/downloads/19960014821.pdf (accessed on 6 July 2025).
- Zhao, M.; Liu, Y.; Elmhamdi, A.; Kordi, A.; Al-Trabulsy, H.; Zhang, X.; Song, T.; Liu, S.; Shen, Y.; Tian, Z.; et al. Automatic data analysis for the Sky Brightness Monitor. Mon. Not. R. Astron. Soc. 2014, 443, 1955–1966. [Google Scholar] [CrossRef]
Parameter | Conventional SDIMM | LP-SDIMM | Reduction |
---|---|---|---|
Aperture | 30–40 cm | 20 cm | 30–50% |
Total mass (w/mount) | 50–70 kg | 20 kg | 75–80% |
Hardware cost | ¥100,000–200,000 RMB | <¥30,000 RMB | >70% |
Optical length | 1.6–2 m | 0.8–1 m | >50% |
Deployment time | >10 min | <5 min | 50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Feng, J.; Qian, X.; Yao, Y.; Zhao, M.; Kang, K.; Song, T. A Low-Cost Portable SDIMM for Daytime Atmospheric Optical Turbulence Measurement in Observatory Site Testing: Primary Results from Ali Site. Photonics 2025, 12, 705. https://doi.org/10.3390/photonics12070705
Wang J, Feng J, Qian X, Yao Y, Zhao M, Kang K, Song T. A Low-Cost Portable SDIMM for Daytime Atmospheric Optical Turbulence Measurement in Observatory Site Testing: Primary Results from Ali Site. Photonics. 2025; 12(7):705. https://doi.org/10.3390/photonics12070705
Chicago/Turabian StyleWang, Jingxing, Jing Feng, Xuan Qian, Yongqiang Yao, Mingyu Zhao, Kaifeng Kang, and Tengfei Song. 2025. "A Low-Cost Portable SDIMM for Daytime Atmospheric Optical Turbulence Measurement in Observatory Site Testing: Primary Results from Ali Site" Photonics 12, no. 7: 705. https://doi.org/10.3390/photonics12070705
APA StyleWang, J., Feng, J., Qian, X., Yao, Y., Zhao, M., Kang, K., & Song, T. (2025). A Low-Cost Portable SDIMM for Daytime Atmospheric Optical Turbulence Measurement in Observatory Site Testing: Primary Results from Ali Site. Photonics, 12(7), 705. https://doi.org/10.3390/photonics12070705