3D Mueller-Matrix Diffusive Tomography of Polycrystalline Blood Films for Cancer Diagnosis
Abstract
:1. Introduction
- Isolation of the depolarized component of Mueller matrix of thin blood films by its decomposition on the basis of differential matrices of first order (i.e., the polarized part, which is the distribution of the mean values of the optical anisotropy parameters of polycrystalline structures of proteins and formed elements) and the second one (i.e., the depolarized part, defined by distribution of fluctuations of linear and circular birefringence and dichroism) [31,32,33,34,35,36];
- ; are the linear birefringence for orthogonal components and ;
- ; are the linear dichroism for orthogonal components and ;
- ; are the circular birefringence and dichroism for right () and left- () circularly polarized components.
- (1)
- Average values of parameters of optical anisotropy.
- (2)
- Cross correlations of fluctuations of values of linear and circular birefringences and dichroism .
- (3)
- Autocorrelation of fluctuations of the values of parameters of phase and amplitude anisotropies.
2. Materials and Methods
2.1. Optical Scheme and 3D Mueller-Matrix Polarimetry Technique
- “input” polarizers six and 11 forming plane-polarized beams with azimuth ;
- quarterwave plates seven and 12 (Achromatic True Zero-Order Waveplate) and polarizer four (B + W Kaesemann XS-Pro Polarizer MRC Nano) forming right-circularly polarized beams ;
- “output” polarizers eight and 13, forming a series of plane-polarized beams .
- The procedure of determination of the layered distributions of diffuse tomograms includes the following steps:
- Formation in the irradiating and reference laser beams the next polarization states—.
- Registration of each interference pattern through the polarizer-analyzer 14 with a consistent orientation of the plane of transmission at angles .
- In each phase plane , for a series of planar (with azimuths ) and the right of circularly () polarized irradiating beams, the distributions of the four sets of parameters of the Stokes vector are calculated.
- On the basis of Equation (16) layered Muller-matrix images are determined as:
2.2. Samples
3. Results and Discussion
3.1. Layered Maps of Fluctuations in the Parameters of Phase Anisotropy of a Partially Depolarizing Polycrystalline Film of Blood
- Individuality of layer wise coordinate distributions of linear () and circular () birefringence parameters (Figure 2) fluctuations;
- Dependence of the structure on the value of the phase section ;
- Increasing () of amplitude fluctuations with growing of .
- In each phase cross-section, the coordinate distributions were estimated by calculating the aggregate of statistical moments of the first–fourth order [3,4,5]. By means of MATLAB software, we calculated the histograms (operator “hist”) and statistical moments of the first–fourth order (operator mean, STD, skewness, excess), which characterize the distributions
- —1.77–1.81 times;
- —1.83–1.89 times;
- —1.81–2.82 times.
3.2. 3D Mueller-Matrix Differentiation of Diffuse Polycrystalline Films of Blood
- Determination in each group of samples of a series of “phase” layered images of 3D distributions .
- Calculations for each “phase” section of the statistical moments of the first–fourth order .
- Definition of “phase” planes (), where the differences between the statistical moments are maximum—().
- In the phase plane , the mean and error within the polycrystalline blood films from group 1 and group 2 are determined.
- (1)
- The growth of linear birefringence fluctuations due to the formation of supramolecular polycrystalline protein structures (albumin, fibrin);
- (2)
- Increasing concentration and crystallization of birefringent leukocytes;
- (3)
- The growth of circular birefringence fluctuations due to the increase in the concentration and crystallization of optically active globulin molecules.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manhas, S.; Swami, M.K.; Buddhiwant, P.; Ghosh, N.; Gupta, P.K.; Singh, K. Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry. Opt. Exp. 2006, 14, 190–202. [Google Scholar] [CrossRef]
- Deng, Y.; Zeng, S.; Lu, Q.; Luo, Q. Characterization of backscattering Mueller matrix patterns of highly scattering media with triple scattering assumption. Opt. Exp. 2007, 15, 9672–9680. [Google Scholar] [CrossRef]
- Ushenko, A.G.; Pishak, V.P. Laser Polarimetry of Biological Tissue: Principles and Applications. In Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science; Tuchin, V.V., Ed.; Kluwer Academic Publishers: Boston, MA, USA, 2004; Volume I, pp. 93–138. [Google Scholar]
- Angelsky, O.V.; Ushenko, A.G.; Ushenko, Y.A.; Pishak, V.P.; Peresunko, A.P. Statistical, Correlation and Topological Approaches in Diagnostics of the Structure and Physiological State of Birefringent Biological Tissues. In Handbook of Photonics for Biomedical Science; Tuchin, V.V., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2010; pp. 283–322. [Google Scholar]
- Ushenko, Y.A.; Boychuk, T.M.; Bachynsky, V.T.; Mincer, O.P. Diagnostics of Structure and Physiological State of Birefringent Biological Tissues: Statistical, Correlation and Topological Approaches. In Handbook of Coherent-Domain Optical Methods; Springer Science + Business Media: New York, NY, USA, 2013; p. 107. [Google Scholar]
- Ghosh, N.; Wood, M.; Vitkin, A. Polarized light assessment of complex turbid media such as biological tissues via Mueller matrix decomposition. In Handbook of Photonics for Biomedical Science; Tuchin, V.V., Ed.; CRC Press, Taylor & Francis Group: London, UK, 2010; pp. 253–282. [Google Scholar]
- Swami, M.K.; Patel, H.S.; Gupta, P.K. Conversion of 3 × 3 Mueller matrix to 4 × 4 Mueller matrix for non-depolarizing samples. Opt. Commun. 2013, 286, 18–22. [Google Scholar] [CrossRef]
- Izotova, V.F.; Maksimova, I.L.; Nefedov, I.S.; Romanov, S.V. Investigation of Mueller matrices of anisotropic nonhomogeneous layers in application to an optical model of the cornea. Appl. Opt. 1997, 36, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Borovkova, M.; Peyvasteh, M.; Ushenko, Y.O.; Dubolazov, O.V.; Ushenko, V.O.; Bykov, A.V.; Novikova, T.P.; Meglinski, I. Complementary analysis of Muller-matrix images of optically anisotropic highly scattering biological tissues. J. Eur. Opt. Soc. Rapid Publ. 2018, 14, 20. [Google Scholar] [CrossRef]
- Ushenko, V.A.; Dubolazov, A.V.; Pidkamin, L.Y.; Sakchnovsky, M.Y.; Bodnar, A.B.; Ushenko, Y.A.; Ushenko, A.G.; Bykov, A.; Meglinski, I. Mapping of polycristalline films of biological fluids utilizing Jones-matrix formalism. Laser Phys. 2018, 28, 025602. [Google Scholar] [CrossRef]
- Lu, S.Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, N.; He, H.; Yun, T.; Du, E.; Liao, R.; Ma, H. A study on forward scattering Mueller matrix decomposition in anisotropic medium. Opt. Exp. 2013, 21, 18361–18370. [Google Scholar] [CrossRef]
- Deboo, B.; Sasian, J.; Chipman, R.A. Degree of polarization surfaces and maps for analysis of depolarization. Opt. Exp. 2004, 12, 4941–4958. [Google Scholar] [CrossRef]
- Buscemi, I.C.; Guyot, S. Near real-time polarimetric imaging system. J. Biomed. Opt. 2013, 18, 116002. [Google Scholar] [CrossRef]
- Manhas, S.; Vizet, J.; Deby, S.; Vanel, J.C.; Boito, P.; Verdier, M.; Pagnoux, D. Demonstration of full 4? 4 Mueller polarimetry through an optical fiber for endoscopic applications. Opt. Exp. 2015, 23, 3047–3054. [Google Scholar] [CrossRef] [PubMed]
- Pierangelo, A.; Manhas, S.; Benali, A.; Fallet, C.; Totobenazara, J.L.; Antonelli, M.R.; Validire, P. Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas. J. Biomed. Opt. 2013, 18, 046014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vladimir, Z.; Wang, J.B.; Yan, X.H. Human Blood Plasma Crystal and Molecular Biocolloid Textures—Dismetabolism and Genetic Breaches. Nat. Sci. J. Xiangtan Univ. 2001, 23, 118–127. [Google Scholar]
- Brutin, D.; Sobac, B.; Loquet, B.; Sampol, J. Pattern formation in drying drops of blood. J. Fluid Mech. 2011, 667, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Ushenko, Y.A.; Ushenko, V.A.; Dubolazov, A.V.; Balanetskaya, V.O.; Zabolotna, N.I. Mueller-matrix diagnostics of optical properties of polycrystalline networks of human blood plasma. Opt. Spectrosc. 2012, 112, 884–892. [Google Scholar] [CrossRef]
- Ushenko, Y.A.; Dubolazov, A.V.; Balanetskaya, V.O.; Karachevtsev, A.O.; Ushenko, V.A. Wavelet-analysis of polarization maps of human blood plasma. Opt. Spectrosc. 2012, 113, 332–343. [Google Scholar] [CrossRef]
- Ungurian, V.P.; Ivashchuk, O.I.; Ushenko, V.O. Statistical analysis of polarizing maps of blood plasma laser images for the diagnostics of malignant formations. Proc. SPIE 2011, 8338, 83381L. [Google Scholar]
- Ushenko, V.A.; Dubolazov, O.V.; Karachevtsev, A.O. Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer. Appl. Opt. 2014, 53, B128–B139. [Google Scholar] [CrossRef]
- Prysyazhnyuk, V.P.; Ushenko, Y.A.; Dubolazov, A.V.; Ushenko, A.G.; Ushenko, V.A. Polarization-dependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation. Appl. Opt. 2016, 55, B126–B132. [Google Scholar] [CrossRef]
- Ushenko, V.A.; Gavrylyak, M.S. Azimuthally invariant Mueller-matrix mapping of biological tissue in differential diagnosis of mechanisms protein molecules networks anisotropy. Proc. SPIE 2013, 8812, 88120Y. [Google Scholar]
- Ushenko, V.A.; Gorsky, M.P. Complex degree of mutual anisotropy of linear birefringence and optical activity of biological tissues in diagnostics of prostate cancer. Opt. Spectrosc. 2013, 115, 290–297. [Google Scholar] [CrossRef]
- Ushenko, V.A.; Dubolazov, A.V. Correlation and self similarity structure of polycrystalline network biological layers Mueller matrices images. Proc. SPIE 2013, 8856, 88562D. [Google Scholar]
- Ushenko, V.O. Spatial-frequency polarization phasometry of biological polycrystalline networks. Opt. Mem. Neur. Netw. 2013, 22, 56–64. [Google Scholar] [CrossRef]
- Ushenko, V.A.; Pavlyukovich, N.D.; Trifonyuk, L. Spatial-Frequency Azimuthally Stable Cartography of Biological Polycrystalline Networks. Int. J. Opt. 2013, 2013, 683174. [Google Scholar] [CrossRef]
- Acton, Q.A. Blood Cells—Advances in Research and Application—2012 Edition; Ashton, Q., Ed.; ScolarlyEditions™: Atlanta, GA, USA, 2012; p. 468. [Google Scholar]
- Drexler, W.; Fujimoto, J.G. Optical Coherence Tomography: Technology and Applications; Spriger Science & Business Media: New York, NY, USA, 2008; p. 1346. [Google Scholar]
- Ortega-Quijano, N.; Arce-Diego, J.L. Mueller matrix differential decomposition. Opt. Lett. 2011, 36, 1942–1944. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Quijano, N.; Arce-Diego, J.L. Depolarizing differential Mueller matrices. Opt. Lett. 2011, 36, 2429–2431. [Google Scholar] [CrossRef] [PubMed]
- Ossikovski, R.; Devlaminck, V. General criterion for the physical realizability of the differential Mueller matrix. Opt. Lett. 2014, 39, 1216–1219. [Google Scholar] [CrossRef]
- Ossikovski, R.; Arteaga, O. Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media. Opt. Lett. 2014, 39, 4470–4473. [Google Scholar] [CrossRef]
- Devlaminck, V.; Ossikovski, R. Uniqueness of the differential Mueller matrix of uniform homogeneous media. Opt. Lett. 2014, 39, 3149–3152. [Google Scholar] [CrossRef]
- Devlaminck, V. Physical model of differential Mueller matrix for depolarizing uniform media. J. Opt. Soc. Am. A 2013, 30, 2196–2204. [Google Scholar] [CrossRef]
- Dubolazov, O.V.; Ushenko, V.O.; Trifoniuk, L.; Ushenko, Y.O.; Zhytaryuk, V.G.; Prydiy, O.G.; Meglinski, I. Methods and means of 3D diffuse Mueller-matrix tomography of depolarizing optically anisotropic biological layers. Proc. SPIE 2017, 10396, 103962P. [Google Scholar]
- Ushenko, O.G.; Grytsyuk, M.; Ushenko, V.O.; Bodnar, G.B.; Vanchulyak, O.; Meglinski, I. Differential 3D Mueller-matrix mapping of optically anisotropic depolarizing biological layers. Proc. SPIE 2018, 10612, 106121I. [Google Scholar]
- Yasuno, Y.; Ju, M.; Hong, Y.; Makita, S.; Miura, M. In Vivo Three-Dimensional Investigation of Tissue Birefringence by Jones Matrix Tomography. In 2013 Conference on Lasers and Electro-Optics Pacific Rim; Paper WJ4_2; Optical Society of America: Washington, DC, USA, 2013. [Google Scholar]
- Kobata, T.; Nomura, T. Digital holographic three-dimensional Mueller matrix imaging. Appl. Opt. 2015, 54, 5591–5596. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Statistical properties of laser speckle patterns. In Laser Speckle and Related Phenomena; Dainty, J.C., Ed.; Springer: Berlin, Gernamy, 1975; pp. 9–75. [Google Scholar]
- Cassidy, L.D. Basic concepts of statistical analysis for surgical research. J. Surg. Res. 2005, 128, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.S. Statistical Methods of the Analysis of Repeated Measurements; Springer: New York, NY, USA, 2002. [Google Scholar]
- Robinson, S.P. Principles of Forensic Medicine; Greenwich Medical Media: London, UK, 1996; p. 188. [Google Scholar]
0.6 rad | 0.9 rad | 1.2 rad | 0.6 rad | 0.9 rad | 1.2 rad | 0.6 rad | 0.9 rad | 1.2 rad | |
0.09 | 0.12 | 0.15 | 0.055 | 0.095 | 0.12 | 0.16 | 0.13 | 0.09 | |
0.08 | 0.105 | 0.13 | 0.045 | 0.07 | 0.105 | 0.13 | 0.11 | 0.08 | |
0.38 * | 0.29 * | 0.21 * | 0.66 * | 0.52 * | 0.36 * | 0.31 * | 0.19 * | 0.11 * | |
0.32 * | 0.25 * | 0.18 * | 0.93 * | 0.78 * | 0.49 * | 0.38 * | 0.31 * | 0.21 * |
Samples | Group 1 | Group 2 | |
0.060.0047 | 0.0750.0069 | 78 | |
0.080.0005 | 0.0950.006 | 74 | |
0.460.022 * | 0.330.018 * | 84 | |
0.390.019 * | 0.270.015 * | 80 | |
Samples | Group 1 | Group 2 | |
0.070.004 | 0.090.005 | 74 | |
0.1050.003 | 0.120.0045 | 76 | |
0.760.041 * | 0.590.032 * | 84 | |
1.030.053 * | 0.810.039 * | 82 | |
Samples | Group 1 | Group 2 | |
0.020.008 | 0.030.01 | 82 | |
0.030.005 | 0.040.007 | 78 | |
0.360.019 * | 0.210.011 * | 92 | |
0.490.024 * | 0.330.017 * | 90 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushenko, V.; Sdobnov, A.; Syvokorovskaya, A.; Dubolazov, A.; Vanchulyak, O.; Ushenko, A.; Ushenko, Y.; Gorsky, M.; Sidor, M.; Bykov, A.; et al. 3D Mueller-Matrix Diffusive Tomography of Polycrystalline Blood Films for Cancer Diagnosis. Photonics 2018, 5, 54. https://doi.org/10.3390/photonics5040054
Ushenko V, Sdobnov A, Syvokorovskaya A, Dubolazov A, Vanchulyak O, Ushenko A, Ushenko Y, Gorsky M, Sidor M, Bykov A, et al. 3D Mueller-Matrix Diffusive Tomography of Polycrystalline Blood Films for Cancer Diagnosis. Photonics. 2018; 5(4):54. https://doi.org/10.3390/photonics5040054
Chicago/Turabian StyleUshenko, Volodimir, Anton Sdobnov, Anna Syvokorovskaya, Alexander Dubolazov, Oleh Vanchulyak, Alexander Ushenko, Yurii Ushenko, Mykhailo Gorsky, Maxim Sidor, Alexander Bykov, and et al. 2018. "3D Mueller-Matrix Diffusive Tomography of Polycrystalline Blood Films for Cancer Diagnosis" Photonics 5, no. 4: 54. https://doi.org/10.3390/photonics5040054