Evidence of Intersubband Linewidth Narrowing Using Growth Interruption Technique
Abstract
:1. Introduction
2. Samples Description and Experimental Setup
2.1. Samples Description
2.2. Experimental Setup
3. Results
3.1. Effect of the Ionized Impurities Scattering
3.2. The Improvement of the Interface Roughness by Growth Interruption
4. The Influence of the Growth Interruption on the Strong Coupling Regime
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.F. Quantum-well infrared photodetectors. J. Appl. Phys. 1993, 74, R4. [Google Scholar] [CrossRef]
- Nookala, N.; Xu, J.; Wolf, O.; March, S.; Sarma, R.; Bank, S.; Klem, J.; Brener, I.; Belkin, M. Mid-infrared second-harmonic generation in ultra-thin plasmonic metasurfaces without a full-metal backplane. Appl. Phys. A 2018, 124, 132. [Google Scholar] [CrossRef]
- De Liberato, S.; Ciuti, C. Stimulated Scattering and Lasing of Intersubband Cavity Polaritons. Phys. Rev. Lett. 2009, 102, 136403. [Google Scholar] [CrossRef]
- Colombelli, R.; Manceau, J.-M. Perspectives for Intersubband Polariton Lasers. Phys. Rev. X 2015, 5, 011031. [Google Scholar]
- Campman, K.L.; Schmidt, H.; Imamoglu, A.; Gossard, A.C. Interface roughness and alloy-disorder scattering contributions to intersubband transition linewidths. Appl. Phys. Lett. 1996, 69, 2554–2556. [Google Scholar] [CrossRef]
- Dupont, E.B.; Delacourt, D.; Papillon, D.; Schnell, J.P.; Papuchon, M. Influence of ionized impurities on the linewidth of intersubband transitions in GaAs/GaAlAs quantum wells. Appl. Phys. Lett. 1992, 60, 2121–2122. [Google Scholar] [CrossRef]
- Faist, J.; Sirtori, C.; Capasso, F.; Pfeiffer, L.; West, K.W. Phonon limited intersubband lifetimes and linewidths in a two-dimensional electron gas. Appl. Phys. Lett. 1994, 64, 872–874. [Google Scholar] [CrossRef]
- Delteil, A.; Vasanelli, A.; Jouy, P.; Barate, D.; Moreno, J.C.; Teissier, R.; Baranov, A.N.; Sirtori, C. Optical phonon scattering of cavity polaritons in an electroluminescent device. Phys. Rev. B 2011, 83, 081404. [Google Scholar] [CrossRef]
- Manceau, J.-M.; Tran, N.-L.; Biasiol, G.; Laurent, T.; Sagnes, I.; Beaudoin, G.; De Liberato, S.; Carusotto, I.; Colombelli, R. Resonant intersubband polariton-LO phonon scattering in an optically pumped polaritonic device. Appl. Phys. Lett. 2018, 112, 191106. [Google Scholar] [CrossRef] [Green Version]
- Hopfield, J.J. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. 1958, 112, 1555–1567. [Google Scholar] [CrossRef]
- Manceau, J.-M.; Zanotto, S.; Sagnes, I.; Beaudoin, G.; Colombelli, R. Optical critical coupling into highly confining metal-insulator-metal resonators. Appl. Phys. Lett. 2013, 103, 91110. [Google Scholar] [CrossRef]
- Tran, N.-L.; Malerba, M.; Talneau, A.; Biasiol, G.; Ouznali, O.; Bousseksou, A.; Manceau, J.-M.; Colombelli, R. III-V on CaF2: A possible waveguiding platform for mid-IR photonic devices. Opt. Express 2019, 27, 1672–1682. [Google Scholar] [CrossRef] [PubMed]
- Houdré, R.; Stanley, R.P.; Ilegems, M. Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system. Phys. Rev. A 1996, 53, 2711–2715. [Google Scholar] [CrossRef] [PubMed]
- Manceau, J.-M.; Biasiol, G.; Tran, N.L.; Carusotto, I.; Colombelli, R. Immunity of intersubband polaritons to inhomogeneous broadening. Phys. Rev. B 2017, 96, 235301. [Google Scholar] [CrossRef] [Green Version]
- Manceau, J.-M.; Zanotto, S.; Ongarello, T.; Sorba, L.; Tredicucci, A.; Biasiol, G.; Colombelli, R. Mid-infrared intersubband polaritons in dispersive metal-insulator-metal resonators. Appl. Phys. Lett. 2014, 105, 081105. [Google Scholar] [CrossRef] [Green Version]
- Helm, M. The basic physics of intersubband transitions. In Intersubband Transitions in Quantum Wells: Physics and Device Applications I; Liu, H.C., Capasso, F., Eds.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2000; pp. 1–99. [Google Scholar]
- Helman, A.; Tchernycheva, M.; Lusson, A.; Warde, E.; Julien, F.H.; Moumanis, K.; Fishman, G.; Monroy, E.; Daudin, B.; Dang, D.L.S.; et al. Intersubband spectroscopy of doped and undoped GaN/AlN quantum wells grown by molecular-beam epitaxy. Appl. Phys. Lett. 2003, 83, 5196. [Google Scholar] [CrossRef]
- Ando, T.; Fowler, A.B.; Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 1982, 54, 437–672. [Google Scholar] [CrossRef]
- Warburton, R.J.; Weilhammer, K.; Kotthaus, J.P.; Thomas, M.; Kroemer, H. Influence of Collective Effects on the Linewidth of Intersubband Resonance. Phys. Rev. Lett. 1998, 80, 2185–2188. [Google Scholar] [CrossRef]
- Graf, S.; Sigg, H.; Köhler, K.; Bächtold, W. Direct Observation of Depolarization Shift of the Intersubband Resonance. Phys. Rev. Lett. 2000, 84, 2686–2689. [Google Scholar] [CrossRef]
- Stormer, H. Electron Mobilities in Modulation-Doped Gaas-(Alga)As Heterostructures. Surf. Interfaces Phys. Electron. 1983, 132, 519–526. [Google Scholar]
- Sakaki, H.; Tanaka, M.; Yoshino, J. One Atomic Layer Heterointerface Fluctuations in GaAs-AlAs Quantum Well Structures and their Suppression by Insertion of Smoothing Period in Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 1985, 24, 417–420. [Google Scholar] [CrossRef]
- Weisbuch, C.; Dingle, R.; Gossard, A.C.; Wiegmann, W. Optical characterization of interface disorder in GaAs-Ga1-xAlxAs multi-quantum well structures. Solid State Commun. 1981, 38, 709–712. [Google Scholar] [CrossRef]
- Goldstein, L.; Horikoshi, Y.; Tarucha, S.; Okamoto, H. Effect of Well Size Fluctuation on Photoluminescence Spectrum of AlAs-GaAs Superlattices. Jpn. J. Appl. Phys. 1983, 22, 1489–1492. [Google Scholar] [CrossRef]
- Unuma, T.; Yoshita, M.; Noda, T.; Sakaki, H.; Akiyama, H. Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities. J. Appl. Phys. 2003, 93, 1586. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Sakaki, H.; Yoshino, J. Atomic-Scale Structures of Top and Bottom Heterointerfaces in GaAs-AlxGa1-xAs (x = 0.2 – 1) Quantum Wells Prepared by Molecular Beam Epitaxy with Growth Interruption. Jpn. J. Appl. Phys. 1986, 25 Pt 2, L155–L158. [Google Scholar] [CrossRef]
- Sakaki, H.; Tanaka, M. Atomistic models of interface structures of GaAs-AlxGa1-xAs (x = 0.2 − 1) quantum wells grown by interrupted and uninterrupted MBE. J. Cryst. 1987, 81, 153–158. [Google Scholar]
- Tu, C.; Miller, R.; Petroff, P.; Harris, T.; Kopf, R.; Sputz, S.; Lamont, M.; Wilson, B. Properties of (Al,Ga)As/GaAs heterostructures grown by molecular beam epitaxy with growth interruption. J. Cryst. 1987, 81, 159–163. [Google Scholar] [CrossRef]
- Petroff, P.M.; Miller, R.C.; Gossard, A.C.; Wiegmann, W. Impurity trapping, interface structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy. Appl. Phys. Lett. 1984, 44, 217. [Google Scholar] [CrossRef]
- Singh, J.; Bajaj, K.K. Role of interface roughness and alloy disorder in photoluminescence in quantum-well structures. J. Appl. Phys. 1985, 57, 5433–5437. [Google Scholar] [CrossRef]
- Khurgin, J.B. Inhomogeneous origin of the interface roughness broadening of intersubband transitions. Appl. Phys. Lett. 2008, 93, 91104. [Google Scholar] [CrossRef]
- Murphy, F.J.; Bak, A.O.; Matthews, M.; Dupont, E.; Amrania, H.; Phillips, C.C. Linewidth-narrowing phenomena with intersubband cavity polaritons. Phys. Rev. B 2014, 89, 205319. [Google Scholar] [CrossRef] [Green Version]
Sample | Detail | Doping (cm−2) | Number of QWs | Intersubband Transition (meV) | Linewidth (meV) |
---|---|---|---|---|---|
HM3770 | Volume doping | 1.05 × 1011 | 35 | 129.4 | 13.1 |
HM3818 | Modulation doping | 1.02 × 1011 | 35 | 119.7 | 6.3 |
HM4105 | Nominally undoped | 87 | 127 | 6.4 |
Sample | Detail | Doping (cm−2) | Number of QWs |
---|---|---|---|
HM4046 | 0 second (s.) growth interruption (g.i) | 1.02 × 1012 | 38 |
HM4048 | 30 s. g.i on AlGaAs/GaAs | 1.02 × 1012 | 38 |
HM4049 | 60 s. g.i on AlGaAs/GaAs | 1.02 × 1012 | 38 |
HM4042 | 120 s. g.i on AlGaAs/GaAs | 1.02 × 1012 | 38 |
HM4043 | 30 s. g.i on GaAs/AlGaAs | 1.02 × 1012 | 38 |
HM4044 | 60 s. g.i on GaAs/AlGaAs | 1.02 × 1012 | 38 |
HM4045 | 120 s. g.i on GaAs/AlGaAs | 1.02 × 1012 | 38 |
HM4014 | 120 s. g.i on both interfaces | 1.02 × 1012 | 38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, N.L.; Biasiol, G.; Jollivet, A.; Bertocci, A.; Julien, F.H.; Manceau, J.-M.; Colombelli, R. Evidence of Intersubband Linewidth Narrowing Using Growth Interruption Technique. Photonics 2019, 6, 38. https://doi.org/10.3390/photonics6020038
Tran NL, Biasiol G, Jollivet A, Bertocci A, Julien FH, Manceau J-M, Colombelli R. Evidence of Intersubband Linewidth Narrowing Using Growth Interruption Technique. Photonics. 2019; 6(2):38. https://doi.org/10.3390/photonics6020038
Chicago/Turabian StyleTran, Ngoc Linh, Giorgio Biasiol, Arnaud Jollivet, Alberto Bertocci, François H. Julien, Jean-Michel Manceau, and Raffaele Colombelli. 2019. "Evidence of Intersubband Linewidth Narrowing Using Growth Interruption Technique" Photonics 6, no. 2: 38. https://doi.org/10.3390/photonics6020038
APA StyleTran, N. L., Biasiol, G., Jollivet, A., Bertocci, A., Julien, F. H., Manceau, J. -M., & Colombelli, R. (2019). Evidence of Intersubband Linewidth Narrowing Using Growth Interruption Technique. Photonics, 6(2), 38. https://doi.org/10.3390/photonics6020038