A Robust Method for Adjustment of Laser Speckle Contrast Imaging during Transcranial Mouse Brain Visualization
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vakoc, B.J.; Lanning, R.M.; Tyrrell, J.A.; Padera, T.P.; Bartlett, L.A.; Stylianopoulos, T.; Munn, L.L.; Tearney, G.J.; Fukumura, D.; Jain, R.K.; et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 2009, 15, 1219–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, E.W.; Maslov, K.; Wang, L.V. Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy. J. Appl. Phys. 2009, 105, 102027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, N.C.; Patel, M.; Morscher, S.; Driessen, W.H.; Claussen, J.; Beziere, N.; Jetzfellner, T.; Taruttis, A.; Razansky, D.; Bednar, B.; et al. Multispectral opto-acoustic tomography (MSOT) of the brain and glioblastoma characterization. NeuroImage 2013, 65, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Harb, R.; Whiteus, C.; Freitas, C.; Grutzendler, J. In vivo imaging of cerebral microvascular plasticity from birth to death. J. Cereb. Blood Flow. Metab. 2013, 33, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Towle, E.L.; Richards, L.M.; Kazmi, S.S.; Fox, D.J.; Dunn, A.K. Comparison of indocyanine green angiography and laser speckle contrast imaging for the assessment of vasculature perfusion. Neurosurgery 2012, 71, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Abdurashitov, A.S.; Lychagov, V.V.; Sindeeva, O.A.; Semyachkina-Glushkovskaya, O.V.; Tuchin, V.V. Histogram analysis of laser speckle contrast image for cerebral blood flow monitoring. Front. Optoelectr. 2015, 8, 187–194. [Google Scholar] [CrossRef]
- Semyachkina-Glushkovskaya, O.; Abdurashitov, A.; Pavlov, A.; Shirokov, A.; Navolokin, N.; Pavlova, O.; Gekalyuk, M.; Ulanova, N.; Shushunova, A.; Bodrova, A.; et al. Laser speckle imaging and wavelet analysis of cerebral blood flow associated with the opening of the blood–brain barrier by sound. Chin. Opt. Lett. 2017, 15, 090002. [Google Scholar] [CrossRef]
- Gnyawali, S.C.; Blum, K.; Pal, D.; Ghatak, S.; Khanna, S.; Roy, S.; Sen, C.K. Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation. Sci. Rep. 2017, 7, 41048. [Google Scholar] [CrossRef] [PubMed]
- Kalchenko, V.; Israeli, D.; Kuznetsov, Y.; Harmelin, A. Transcranial optical vascular imaging (TOVI) of cortical hemodynamics in mouse brain. Sci. Rep. 2014, 4, 5839. [Google Scholar] [CrossRef] [PubMed]
- Boas, D.A.; Dunn, A.K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 2010, 15, 011109. [Google Scholar] [CrossRef]
- Glover, S.J.; Maude, R.J.; Taylor, T.E.; Molyneux, M.E.; Beare, N.A. Malarial retinopathy and fluorescein angiography findings in a Malawian child with cerebral malaria. Lancet Infect. Dis. 2010, 10, 440. [Google Scholar] [CrossRef]
- Meglinski, I.; Kalchenko, V.V.; Kuznetsov, Y.L.; Kuznik, B.I.; Tuchin, V.V. Towards the nature of biological zero in the dynamic light scattering diagnostic techniques. Doklady Phys. 2013, 58, 323–326. [Google Scholar] [CrossRef]
- Kalchenko, V.; Kuznetsov, Y.; Harmelin, A.; Meglinski, I.V. Label free in vivo laser speckle imaging of blood and lymph vessels. J. Biomed. Opt. 2012, 17, 050502. [Google Scholar] [CrossRef] [PubMed]
- Kalchenko, V.; Kuznetsov, Y.L.; Meglinski, I. Visualization of blood and lymphatic vessels with increasing exposure time of the detector. Quantum Electron. 2013, 43, 679–682. [Google Scholar] [CrossRef]
- Kalchenko, V.; Madar-Balakirski, N.; Meglinski, I.; Harmelin, A. In vivo characterization of tumor and tumor vascular network using a multi-mode imaging approach. J. Biophotonics 2011, 4, 645–649. [Google Scholar] [PubMed]
- Kalchenko, V.; Ziv, K.; Addadi, Y.; Madar-Balakirski, N.; Meglinski, I.; Neeman, M.; Harmelin, A. Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology. Laser Phys. Lett. 2010, 7, 603–606. [Google Scholar] [CrossRef]
- Kuznetsov, Y.L.; Kalchenko, V.V.; Astaf’eva, N.Y.G.E.; Meglinski, I.V. Optical diagnostics of vascular reactions triggered by weak allergens using the laser speckle imaging contrast technique. Quantum Electron. 2014, 44, 713–718. [Google Scholar] [CrossRef]
- Kalchenko, V.; Kuznetsov, Y.; Preise, D.; Meglinski, I.V.; Harmelin, A. Ear swelling test by using laser speckle imaging with a long exposure time. J. Biomed. Opt. 2014, 19, 060502. [Google Scholar] [CrossRef] [PubMed]
- Briers, J.D.; Webster, S. Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt. 1966, 1, 174–180. [Google Scholar] [CrossRef]
- Sdobnov, A.; Bykov, A.; Molodij, G.; Kalchenko, V.; Jarvinen, T.; Popov, A.; Kordas, K.; Meglinski, I. Speckle dynamics under ergodicity breaking. J. Phys. D Appl. Phys. 2018, 51, 155401. [Google Scholar] [CrossRef] [Green Version]
- Sdobnov, A.; Bykov, A.; Popov, A.; Zherebtsov, E.; Meglinski, I. Investigation of speckle pattern dynamics by laser speckle contrast imaging. Proc. SPIE 2018, 10685, 1068509. [Google Scholar] [Green Version]
- Zakharov, P. Ergodic and non-ergodic regimes in temporal laser speckle imaging. Opt. Lett. 2017, 42, 2299. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Devor, A.; Boas, D.A.; Dunn, A.K. Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl. Opt. 2005, 44, 1823–1830. [Google Scholar] [CrossRef]
- Borniger, J.C.; Teplitsky, S.; Gnyawali, S.; Nelson, R.J.; Rink, C. Photoperiodic Regulation of Cerebral Blood Flow in White-Footed Mice (Peromyscus leucopus). eNeuro 2016, 3, e0058. [Google Scholar] [CrossRef] [PubMed]
- Hecht, N.; Woitzik, J.; Dreier, J.P.; Vajkoczy, P. Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis. Neurosurg. Focus 2009, 27, E11. [Google Scholar] [CrossRef]
- Richards, L.M.; Towle, E.L.; Fox, D.J.; Dunn, A.K. Intraoperative laser speckle contrast imaging with retrospective motion correction for quantitative assessment of cerebral blood flow. Neurophotonics 2014, 1, 015006. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, A.B.; Weber, E.L.; Richards, L.M.; Fox, D.J.; Dunn, A.K. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: A pilot clinical study. J. Biomed. Opt. 2010, 15, 066030. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.; Qiu, J.; Li, P.; Sun, X.; Yin, C.; Luo, W.; Chen, S.; Luo, Q. Simultaneous automatic arteries-veins separation and cerebral blood flow imaging with single-wavelength laser speckle imaging. Opt. Express 2011, 19, 15777–15791. [Google Scholar] [CrossRef]
- Postnov, D.D.; Erdener, S.E.; Kilic, K.; Boas, D.A. Cardiac pulsatility mapping and vessel type identification using laser speckle contrast imaging. Biomed. Opt. Express 2018, 9, 6388–6397. [Google Scholar] [CrossRef]
- Ramirez-San-Juan, J.C.; Regan, C.; Coyotl-Ocelotl, B.; Choi, B. Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers. J. Biomed. Opt. 2014, 19, 106009. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, S.J.; Duncan, D.D.; Wells-Gray, E.M. Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt. Lett. 2008, 33, 2886–2888. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open source platform for biological-image analysis. Nat. Methods. 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Davoodzadeh, N.; Cano-Velázquez, M.S.; Halaney, D.L.; Jonak, C.R.; Binder, D.K.; Aguilar, G. Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging. Biomed. Opt. Express 2018, 9, 4879–4892. [Google Scholar] [CrossRef] [PubMed]
- Benmergui, A.; Drotleff, J.; Pan, T.; Zwiebel, J.; Kuznetsov, I.; Meglinski, I.; Harmelin, A.; Kalchenko, V. Machine learning assisted blood vessel segmentation in laser speckle imaging. Proc. SPIE 2018, 10873, 108730S. [Google Scholar]
- Sdobnov, A.Y.; Darvin, M.E.; Genina, E.A.; Bashkatov, A.N.; Lademann, J.; Tuchin, V.V. Recent progress in tissue optical clearing for spectroscopic application. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 197, 216–229. [Google Scholar] [CrossRef]
- Sdobnov, A.Y.; Lademann, J.; Darvin, M.E.; Tuchin, V.V. Methods for optical skin clearing in molecular optical imaging in dermatology. Biochemistry 2019, 84, 144–158. [Google Scholar] [CrossRef]
- Kalchenko, V.; Israeli, D.; Kuznetsov, Y.; Meglinski, I.; Harmelin, A. A simple approach for non-invasive transcranial optical vascular imaging (nTOVI). J. Biophoton. 2015, 8, 897–901. [Google Scholar] [CrossRef]
- Kalchenko, V.; Meglinski, I.; Sdobnov, A.; Kuznetsov, Y.; Harmelin, A. Combined laser speckle imaging and fluorescent intravital microscopy for monitoring acute vascular permeability reaction. J. Biomed. Opt. 2019, 24, 060501. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalchenko, V.; Sdobnov, A.; Meglinski, I.; Kuznetsov, Y.; Molodij, G.; Harmelin, A. A Robust Method for Adjustment of Laser Speckle Contrast Imaging during Transcranial Mouse Brain Visualization. Photonics 2019, 6, 80. https://doi.org/10.3390/photonics6030080
Kalchenko V, Sdobnov A, Meglinski I, Kuznetsov Y, Molodij G, Harmelin A. A Robust Method for Adjustment of Laser Speckle Contrast Imaging during Transcranial Mouse Brain Visualization. Photonics. 2019; 6(3):80. https://doi.org/10.3390/photonics6030080
Chicago/Turabian StyleKalchenko, Vyacheslav, Anton Sdobnov, Igor Meglinski, Yuri Kuznetsov, Guillaume Molodij, and Alon Harmelin. 2019. "A Robust Method for Adjustment of Laser Speckle Contrast Imaging during Transcranial Mouse Brain Visualization" Photonics 6, no. 3: 80. https://doi.org/10.3390/photonics6030080