Changes in Spectral Fluorescence Properties of a Near-Infrared Photosensitizer in a Nanoform as a Coating of an Optical Fiber Neuroport
Abstract
:1. Introduction
- (1)
- The nanoparticle has absorption and fluorescence peaks in the far-red region of the spectrum, which allows an increase in the depth of photodynamic action on pathological tissues;
- (2)
- It can show itself as an “indicator” of a pathological process, having the ability to photoactivate under conditions of interaction with pathological agents;
- (3)
- The tropicity of the drug to tumor tissues can be increased by using nanoscale particles with diameters of 100–220 nm.
2. Materials and Methods
3. Results
3.1. Studies of the Spectral Fluorescence Properties of Photosensitizers in Nanoform on the Surface of Hydroxyapatite
3.2. Studies of the Spectral Fluorescence Properties of Photosensitizers in Nanoform when Interacting with Cells
3.2.1. THP-1 Immune System Cells
3.2.2. C6 Malignant Glioma Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, K. Luorescent Analytical Method, Xiamen University; Science Publishing House: New York, NY, USA, 1990. [Google Scholar]
- Korbelik, M.; Krosl, G. Br Photofrin accumulation in malignant and host cell populations of various tumours. J. Cancer 1996, 73, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Lu, R.; Wang, X.; Chou, J.; Wang, N.; Huai, X.; Wang, C.; Zhao, Y.; Chen, S. Immune response of macrophages on super-hydrophilic TiO2 nanotube arrays. J. Biomater. Appl. 2020, 34, 1239–1253. [Google Scholar] [CrossRef]
- Sharma, S.; Jajoo, A.; Dube, A. 5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines. J. Photochem. Photobiol. B Biol. 2007, 88, 156–162. [Google Scholar] [CrossRef]
- Demidova, T.N.; Hamblin, M.R. Macrophage-Targeted Photodynamic Therapy. Int. J. Immunopathol. Pharmacol. 2004, 17, 117–126. [Google Scholar] [CrossRef]
- Schastak, S.; Jean, B.; Handzel, R.; Kostenich, G.; Hermann, R.; Sack, U.; Orenstein, A.; Wang, Y.-S.; Wiedemann, P. Improved pharmacokinetics, biodistribution and necrosis in vivo using a new near infra-red photosensitizer: Tetrahydroporphyrin tetratosylat. J. Photochem. Photobiol. B Biol. 2005, 78, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Schastak, S.; Yafai, Y.; Geyer, W.; Kostenich, G.; Orenstein, A.; Wiedemann, P. Initiation of apoptosis by photodynamic therapy using a novel positively charged and water soluble near infra-red photosensitizer and white light irradiation. Methods Find. Exp. Clin. Pharmacol. 2008, 30, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Maawy, A.A.; Hiroshima, Y.; Zhang, Y.; Heim, R.; Makings, L.; Garcia-Guzman, M.; Luiken, G.A.; Kobayashi, H.; Hoffman, R.M.; Bouvet, M. Near Infra-Red Photoimmunotherapy with Anti-CEA-IR700 Results in Extensive Tumor Lysis and a Significant Decrease in Tumor Burden in Orthotopic Mouse Models of Pancreatic Cancer. PLoS ONE 2015, 10, e0121989. [Google Scholar] [CrossRef] [PubMed]
- Maklygina, Y.; Romanishkin, I.; Skobeltsin, A.; Farrakhova, D.; Loschenov, V. Phototherapy of Brain Tumours Using a Fibre Optic Neurosystem. Photonics 2021, 8, 462. [Google Scholar] [CrossRef]
- Yoon, I.; Li, J.; Shim, Y.K. Advance in Photosensitizers and Light Delivery for Photodynamic Therapy. Clin. Endosc. 2013, 46, 7–23. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Assi, H.; Candolfi, M.; Lowenstein, P.R.; Castro, M.G. Rodent Glioma Models: Intracranial Stereotactic Allografts and Xenografts. Neuromethods 2012, 77, 229–243. [Google Scholar] [CrossRef] [PubMed]
- McKay, C.M. Brain Plasticity and Rehabilitation with a Cochlear Implant. Cochlear Implant. Hear. Preserv. 2018, 81, 57–65. [Google Scholar] [CrossRef]
- Spennato, P.; Canella, V.; Aliberti, F.; Russo, C.; Ruggiero, C.; Nataloni, A.; Lombardo, M.; Cinalli, G. Hydroxyapatite ceramic implants for cranioplasty in children: A retrospective evaluation of clinical outcome and osteointegration. Child’s Nerv. Syst. 2020, 36, 551–558. [Google Scholar] [CrossRef]
- Beuriat, P.-A.; Lohkamp, L.-N.; Szathmari, A.; Rousselle, C.; Sabatier, I.; Di Rocco, F.; Mottolese, C. Repair of Cranial Bone Defects in Children Using Synthetic Hydroxyapatite Cranioplasty (CustomBone). World Neurosurg. 2019, 129, e104–e113. [Google Scholar] [CrossRef]
- Stefini, R.; Zanotti, B.; Nataloni, A.; Martinetti, R.; Scafuto, M.; Colasurdo, M.; Tampieri, A. The Efficacy of Custom-Made Porous Hydroxyapatite Prostheses for Cranioplasty: Evaluation of Postmarketing Data on 2697 Patients. J. Appl. Biomater. Funct. Mater. 2015, 13, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Zanotti, B.; Zingaretti, N.; Verlicchi, A.; Robiony, M.; Alfieri, A.; Parodi, P.C. Cranioplasty. J. Craniofacial Surg. 2016, 27, 2061–2072. [Google Scholar] [CrossRef]
- Schmitt, D.; Blanck, O.; Gauer, T.; Fix, M.K.; Brunner, T.B.; Fleckenstein, J.; Loutfi-Krauss, B.; Manser, P.; Werner, R.; Wilhelm, M.L.; et al. Technological quality requirements for stereotactic radiotherapy: Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. Strahlenther Onkol. 2020, 196, 421–443. [Google Scholar] [CrossRef] [Green Version]
- Farrakhova, D.S.; Kuznetsova, J.O.; Loschenov, V.B. The study of laser induced fluorescence of tooth hard tissues with aluminum phthalocyanine nanoparticles. J. Physics Conf. Ser. 2016, 737, 12048. [Google Scholar] [CrossRef] [Green Version]
- Bystrov, F.G.; Makarov, V.I.; Pominova, D.; Ryabova, A.V.; Loschenov, V.B. Analysis of photoluminescence decay kinetics of aluminum phthalocyanine nanoparticles interacting with immune cells. Biomed. Photon. 2016, 5, 3–8. [Google Scholar] [CrossRef]
- Lakowicz, J.R. (Ed.) Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2013. [Google Scholar] [CrossRef]
- Zhenwang, L.; ZhenLu, C.; Jianyan, L. The PT Dye Molecular Structure and Its Chromophoric Luminescence Mechanism. Available online: https://www.ndt.net/article/wcndt00/papers/idn105/idn105.htm (accessed on 1 November 2021).
- Ramachandran, K.; Kumari, A.; Acharyya, J.N.; Chaudhary, A. Study of photo induced charge transfer mechanism of PEDOT with nitro groups of RDX, HMX and TNT explosives using anti-stokes and stokes Raman lines ratios. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119360. [Google Scholar] [CrossRef]
- Maklygina, Y.S. Development of Spectral Fluorescent Methods of Diagnostics and Therapy of Deep Brain Tumors. Ph.D. Thesis, Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 10 July 2019. [Google Scholar]
- Mahon, O.R.; Browe, D.; Gonzalez-Fernandez, T.; Pitacco, P.; Whelan, I.T.; Von Euw, S.; Hobbs, C.; Nicolosi, V.; Cunningham, K.T.; Mills, K.; et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials 2020, 239, 119833. [Google Scholar] [CrossRef]
- Jamalpoor, Z.; Asgari, A.; Lashkari, M.H.; Mirshafiey, A.; Mohsenzadegan, M. Modulation of Macrophage Polarization for Bone Tissue Engineering Applications. Iran. J. Allergy Asthma Immunol. 2018, 17, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, T.L.; Gomoll, A.H.; Lattermann, C.; Hernandez, A.J.; Bueno, D.F.; Amano, M.T. Macrophage: A Potential Target on Cartilage Regeneration. Front. Immunol. 2020, 11, 111. [Google Scholar] [CrossRef] [Green Version]
- Szcześ, A.; Holysz, L.; Chibowski, E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci. 2017, 249, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhao, Q.; Gu, B.; Yin, C.; Shen, K.; Tang, H.; Xia, H.; Zhang, X.; Zhao, Y.; Yang, X.; et al. Minimally invasive implantation and decreased inflammation reduce osteoinduction of biomaterial. Theranostics 2020, 10, 3533–3545. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, X.; Jansen, J.A.; Yang, F.; Beucken, J.J.V.D. Titanium surfaces characteristics modulate macrophage polarization. Mater. Sci. Eng. C 2019, 95, 143–151. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14, 88–95. [Google Scholar] [CrossRef]
- Lebre, F.; Sridharan, R.; Sawkins, M.J.; Kelly, D.J.; O’Brien, F.J.; Lavelle, E.C. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation. Sci. Rep. 2017, 7, 2922. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.-M.; Biswas, S.K.; Wong, S.-C. MicroRNA-mediated immune modulation as a therapeutic strategy in host-implant integration. Adv. Drug Deliv. Rev. 2015, 88, 92–107. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maklygina, Y.; Romanishkin, I.; Skobeltsin, A.; Farrakhova, D.; Kharnas, S.; Bezdetnaya, L.; Loschenov, V. Changes in Spectral Fluorescence Properties of a Near-Infrared Photosensitizer in a Nanoform as a Coating of an Optical Fiber Neuroport. Photonics 2021, 8, 556. https://doi.org/10.3390/photonics8120556
Maklygina Y, Romanishkin I, Skobeltsin A, Farrakhova D, Kharnas S, Bezdetnaya L, Loschenov V. Changes in Spectral Fluorescence Properties of a Near-Infrared Photosensitizer in a Nanoform as a Coating of an Optical Fiber Neuroport. Photonics. 2021; 8(12):556. https://doi.org/10.3390/photonics8120556
Chicago/Turabian StyleMaklygina, Yuliya, Igor Romanishkin, Aleksej Skobeltsin, Dina Farrakhova, Sergej Kharnas, Lina Bezdetnaya, and Victor Loschenov. 2021. "Changes in Spectral Fluorescence Properties of a Near-Infrared Photosensitizer in a Nanoform as a Coating of an Optical Fiber Neuroport" Photonics 8, no. 12: 556. https://doi.org/10.3390/photonics8120556
APA StyleMaklygina, Y., Romanishkin, I., Skobeltsin, A., Farrakhova, D., Kharnas, S., Bezdetnaya, L., & Loschenov, V. (2021). Changes in Spectral Fluorescence Properties of a Near-Infrared Photosensitizer in a Nanoform as a Coating of an Optical Fiber Neuroport. Photonics, 8(12), 556. https://doi.org/10.3390/photonics8120556