Super-Resolution Image Reconstruction Based on Single-Molecule Localization Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Formation and Noise Models
- (1)
- Tublins, long sequence, 15,000 frames of 64 × 64 pixels, pixel size 100 nm;
- (2)
- Tubulin AF647, a fixed cell, stained with mouse anti-alpha-tubulin primary antibody and Alexa647 secondary antibody, 9990 frames of 128 × 128 pixels, pixel size 100 nm;
- (3)
- Tublins, high density, 500 frames of 64 × 64 pixels, pixel size 100 nm.
2.2. Blind Deconvolution and Image Restoration
2.3. Centroid Localization and Image Reconstruction
- (1)
- Denoise and restore images with blind deconvolution method;
- (2)
- Set a proper threshold for the grayscale binarization transformation to exclude background image and localize the position of the light spots (fluorescent molecules);
- (3)
- Perform removal operation to reduce the effects on accuracy due to the overlap of the fluorophores or the large exposure area, which is particularly necessary for densely labeled region with many fluorophores in close proximity [10];
- (4)
- Employ centroid localization algorithm as shown in Equation (5) to locate the single molecule precisely;
- (5)
- Output the positions of the fluorophores in a single frame image;
- (6)
- Reconstruct the positions of all the fluorophores in image sequence and obtain super-resolution image.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat. 1873, 9, 413–468. [Google Scholar] [CrossRef]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rust, M.J.; Bates, M.; Zhuang, X.W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 2005, 102, 13081–13086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, S.T.; Girirajan, T.P.K.; Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 2006, 91, 4258–4272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heilemann, M.; Van De Linde, S.; Schüttpelz, M.; Kasper, R.; Seefeldt, B.; Mukherjee, A.; Tinnefeld, P.; Sauer, M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 2008, 47, 6172–6176. [Google Scholar] [CrossRef]
- Thompson, R.E.; Larson, D.R.; Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 2002, 82, 2775–2783. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.S.; Joseph, N.; Rieger, B.; Lidke, K.A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods 2010, 7, 373–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, A.; Stahlheber, S. Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods 2014, 11, 267–279. [Google Scholar] [CrossRef]
- Ovesný, M.; Křížek, P.; Borkovec, J.; Švindrych, Z.; Hagen, G.M. ThunderSTORM: A comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 2014, 30, 2389–2390. [Google Scholar] [CrossRef] [PubMed]
- Quan, T.; Zeng, S.; Lv, X. Comparison of algorithms for localization of single fluorescent molecule in super resolution imaging. Chin. J. Lasers 2010, 37, 2714–2718. [Google Scholar] [CrossRef]
- Cheezum, M.K.; Walker, W.F.; Guilford, W.H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 2001, 81, 2378–2388. [Google Scholar] [CrossRef] [Green Version]
- Aguet, F.; Ville, D.V.D.; Unser, M. A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles. Opt. Express 2005, 13, 10503–10522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Xu, J.; Jin, J.Y.; Gao, Y.; Lan, L.; Liu, Y. Fast and precise 3D fluorophores localization based on gradient fitting. Sci. Rep. 2015, 5, 14335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, S.B. Localization of a fluorescent source without numerical fitting. Opt. Express 2008, 16, 18715–18724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Dai, L.; Zhang, X.; Li, J.; Hendriks, J.; Fan, X.; Gruteser, N.; Meisenberg, A.; Baumann, A.; Katranidis, A.; et al. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy. Sci. Rep. 2015, 5, 11073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.; Chen, D.; Yu, B.; Niu, H. Reconstruction of super-resolution STORM images using compressed sensing based on low-resolution raw images and interpolation. Biomed. Opt. Express 2017, 8, 2445–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, K.J.A.; Bader, A.N.; Baas, S.; Rieger, B.; Hohlbein, J. Phasor based single-molecule localization microscopy in 3D (pSMLM-3D): An algorithm for MHz localization rates using standard CPUs. J. Chem. Phys. 2018, 148, 123311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, F.; He, W.; Xu, F.; Zhang, M.; Chen, L.; Xu, P. Hessian single-molecule localization microscopy using sCMOS camera. Biophys. Rep. 2018, 4, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Sibarita, J.-B. Deconvolution microscopy. In Microscopy Techniques; Rietdorf, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 95, pp. 201–243. ISBN 978-3-540-23698-6. [Google Scholar]
- Frahm, L. Stochastic Modeling of Photoswitchable Fluorophores for Quantitative Superresolution Microscopy. Ph.D. Thesis, Georg-August-University of Göttingen, Göttingen, Germany, November 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Qi, M.; Liu, Y.; Xue, X.; Chen, D.; Qu, J. Super-Resolution Image Reconstruction Based on Single-Molecule Localization Algorithm. Photonics 2021, 8, 273. https://doi.org/10.3390/photonics8070273
Liu L, Qi M, Liu Y, Xue X, Chen D, Qu J. Super-Resolution Image Reconstruction Based on Single-Molecule Localization Algorithm. Photonics. 2021; 8(7):273. https://doi.org/10.3390/photonics8070273
Chicago/Turabian StyleLiu, Lixin, Meijie Qi, Yujie Liu, Xinzhu Xue, Danni Chen, and Junle Qu. 2021. "Super-Resolution Image Reconstruction Based on Single-Molecule Localization Algorithm" Photonics 8, no. 7: 273. https://doi.org/10.3390/photonics8070273